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Summary 

The bound-state and scattering wavefunctions for a particle moving in a central 

r- 2 potential are investigated. There are no discrete bound states: the discrete states 

which result when an infinite repulsive core is introduced are specified. The scattering 

wavefunctions which satisfy physical requirements such as zero net outflow of particles 

from the scattering region are found. The phase-shifts at are independent of energy 

and for large I to go to zero as (21+ 1)-1. 

I. INTRODUCTION 

This paper considers a particle moving in a central r- 2 potential, or two 

particles interacting through such a central potential. An r- 2 potential lies 

between the long-range Coulomb potential and various short-range potentials, 

such as Yukawa, or square-well, which have been used in nuclear models. 

An r-2 potential is found not to distort the scattering radial wavefunctions 

at infinity, as does the Coulomb potential, but it does produce phase-shifts which 

fall off rather slowly with increasing angular momentum. It is also found that 

the phase-shifts are independent of system energy (as was noticed in recent work 

by Spruch, O'Malley, and Rosenberg (1960) and O'Malley, Spruch, and Rosenberg 

(1961)) so that the simple effective-range theory often used for the analysis 

of low-energy nuclear scattering data cannot be developed for such a potential. 

The singularity of r- 2 at r=O is sufficient to prevent the existence of discrete 

bound states. (Since this paper was written the author has noticed a treatment 

of bound states by Landau and Lifshitz (1958) yielding the same conclusion.) 

The eigenstates which result when this potential is cut off by an infinite repulsive 

core at r=O are specified. 

For a particle moving in a central potential, or two particles interacting 

through a central potential, of the form 

(1 ) 

the Schroedinger equation is separable in spherical polar coordinates and the wave­

function takes the form 

where R(r) satisfies the equation 

d 2R +~ dR +~2M[E_ V(r)] _l(l+l)1 R=O. 
dr2 r dr (fi2 r2 \ 
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On writing 

(2) 

(3) 

we obtain 

(4) 

where 
(5) 

This is simply the equation defining Bessel functions, and the problem is 
to find linear combinations of these functions of order v that satisfy the boundary 
conditions imposed on R(r) by physical requirements of normalization and so 
on. We will use the notation for Bessel functions defined in Watson (1944). 

II. BOUND STATES 

For energies E<O, k=ioc (oc>O) is imaginary. The only Bessel function 
of order v which vanishes as ocr---* 00 is 

u=Kv(ocr), (6) 

which does so exponentially. Now 

7t 
2' [Lv(ocr)-Iv(ocr)], 

SIn V7t . 

where 
00 (tocr)v+2n 

Iv(ocr)=~ 'r( + +1)" n~O n. v n 

so as r---*O, Kv will have a singularity of form r-I Rl vi. 

For an acceptable wavefunction the normalization integral 

f: R2r2d1', 

must converge: this will require that 

I Rl v i <1. 

From (5), this restriction means that 

A<1-(l+t)2. 

(7) 

(8) 

So for wells of depths satisfying (8), equation (6) defines wavefunctions which 
vanish at infinity, are continuous, and are normalizable. However, they then 
exist for all values of oc: there is therefore a continuum of bound states extending 
indefinitely downwards in energy. This is an unacceptable model for a physical 
system. 

If we impose the stronger requirement that R remain finite at the origin, 
then Kv(ocr) is required to go to zero at least like v(ocr) near r=O. This is not 
possible for any values of v or oc. Even if v =0, 

K ( ) - I ( ) 1 1 + ~ (1 )2n~(n+1) o ocr - -0 ocr og 2 0cr £oJ 2 0cr (')2' 
n~O n. 

D 
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which has a logarithmic infinity at r =0. There are then no bound states of the 
system. We conclude that no physical system having a bound state can be 
considered to be described at low energies by a potential function Ar-2. How­
ever, we are familiar in nuclear theory with the idea of energy-dependent 
potentials, so for scattering at higher energies such an Ar-2 potential need not be 
ruled out. 

(a) Cut-off 
If Ar-2 is suitably modified at small r, discrete bound states will exist. If 

there is an infinite repulsive core at r=a, the usual arguments show that the 
eigenstates are given by (6) for r> a, provided that v and IX satisfy 

(9) 

Now for any given lXa, Kv(lXa), regarded as a function of v, has an infinite set of 
purely imaginary zeros and no other zeros (see Erdelyi et al. 1953). Since 
Kv=K-v, we may specify the solutions of (9), for a given lXa, by 

v= ±ifLH ±ifL2" .. , ±ifLs" .. , 

where the fL are real and 

O<fLI < .•. <fLs<' 

These values specify a set of well-depths 

As = -fL;-(l+!)2, 

for a core radius a, for which there is a bound state of energy 

h2 

E=- 2M1X2, 

and eigenfunction 

(10) 

(11) 

(12) 

(13) 

(14) 

Conversely, for a given well-depth A and angular moment~ l, there will be 
a set of bound states specified by 

1 
Rn(r) = y'(lXnr)Ki",(lXnr), 

where fL2=-A-(l+!)2 and the IXn satisfy 

Ki",(lXna) =0. 

(15) 

(16) 

(17) 

In general fL and hence the IXn depend on l: there is no degeneracy between 
states of different angular momenta. The number of roots of (17) will depend 
on fl. Starting at fL =0, (A = - (l +!) 2) there will be no solutions IXn: at a larger 
fL, one solution IXI will appear, and so on. 

Let these roots be arranged in order: 

(18) 
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Then IXI will specify the ground state of the system for the given fL and the wave" 
function (16) will be zero only at 1'=a and as 1'-7-00. The next state 1X2 will 
be zero at 1'1 =a, 1'-7- 00 but also clearly at 

similarly, the next state Cl3 will have eigenfunction zeros at 

and so on. 

III. SCATTERING 

For positive energies k is real and the only Bessel functions that can remain 
finite at the origin are 

for v real (positive), u=Jv(k1'), 

J ±v(k1'), for v imaginary (19} 

(where for convenience v is the positive or positive imaginary root of '1 2), which 
functions have the correct oscillating behaviour for l' large. 

The development which follows differs only slightly from the usual elementary 
treatment (see e.g. Schiff 1955). We require a solution of the SchroediDger 
equation possessing polar symmetry: 

00 

v(1',e)= 2: A/Rz(r)P/ (cos e), 
1=0 

(20) 

where thePz are the Legendre polynomials, which will be identified asymptotically 
with 

(21) 

which represents an incident plane wave plus a scattered spherical wave, in the 
usual way. 

For states of sufficiently large 1, '12 as defined by (5) will be positive, J v 

has the correct behaviour for R z at r=O, and preserves at zero the total outward 
flux over a sphere about the scattering centre. For states of 1 low enough to 
make '12 negative (only possible for attractive forces, A <0), v=ifL (fL> 0 say), 
and J v and J -v both oscillate indefinitely often between finite bounds as r-7-0. 
For small kr, 

Ji{L(kr)'-"(kr)irJ. 
=cos (fL log kr) +i sin (fL log kr). 

The normalization integral about 1'=0 converges. Asymptotically, 

Jiv(kr),-., j (7t~r) sin (k1'-tifL7t+!7t) 

= j (7t~r) sin (k1'+!7t) cosh tfL7t - ij (7t~1') cos (k1'+!7t) sinh tfL7!~ 
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which is not of the usual form, which defines the phase-shift 01, 

Y~kr) sin (kr-tl7t+o t), (22) 

with 01 real. The requirement that the total outward flux over a sphere be zero 
is met if the flux vector 

'f grad ~ - ~ grad ;V (23) 

vanishes. If we choose the combination Jv+J -y the asymptotic form is real 
.and the flux vector vanishes. So for v 2 negative the appropriate form of wave­
iunction to use is 

const. 
R t =2y(kr) [Jv(kr) +J _y(kr)]. 

Let lo be the lowest positive integer for which 

v 2 =A+(lo+t)2 

is positive. Then for l>lo, we take 

while for l <lo we take 

R t =J(s7tk ) h11 [Jiv.(kr) +J -iv.(kr)] r cos 2[1-re 

'--'~r sin (kr + ire). 

(24) 

(25) 

Oomparing these asymptotic forms with (22), the phase-shifts are seen to be 

Ot =(l + t) t7t for l <lm (26) 

=U+t-vH7t I 
=(l+t){l-y[l +A/(l +t)2]}t7t S' 

For l large, the phase-shift is 

A 
0/---- 2l+l . t7t, (27) 

which goes to zero rather slowly as l increases. A potential Ar-2 does not distort 
the radial wave function at infinity, as does the longer range Ooulomb potential, 
but it is not like a short-range force and affects states of high angular momentum. 
It is notable that Ot is independent of the energy. 

We require (20) to equal (21) asymptotically: 

:f: A R P (cos 6) ___ eikr cos 0 + ~ f( 6 )eikr 
I~O t I I r 

=:f: (2l+l)iljt(kr)Pt (cos 6)+ ~eikr :f:fzPt (cos 6). 
I~O r I~O 
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Since the PI (cos El) are orthogonal, this requires that 

A IR I "",(21 +1)i11(kr) + !eikr11' 
r 
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(28) 

Substituting asymptotic forms in (28) and equating coefficients of eikr and 
e-ikr leads to the usual results 

1 - 21+1( 2i8 -1) /- 2ik e 1 , 

0-(6)=11(6) 12=:2 11~0 (21+1)ei81 sin ()/P I (cos El) 12, 

0-= 4k~ ~ (21+1) sin2 ()t. 
l=O 

The wavefunction Sl asymptotically orthogonal as kr_ 00 to Rl for 1 <lo~ 
(as given by (25)) is clearly 

. St=j(87tk) . . hi 1 [Ji!J.-J-i!J.J r sm ]l[J.7t 

1 
r'-'-k cos (kr+t7t), 

r 

(29) 

which is real and for which the flux (23) again vanishes. If a hard core at r=a 
is introduced, the appropriate wavefunctions are of the form, for any 1, 

bl iCI J 
R l = ykr[Jv(kr)+Jv*(kr)J -+- \lkr[ v(kr)-Jv·(kr)], (30) 

with bi) ct real and chosen so that Rt(ka)=O. 
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