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Summary 

The problem of molecular diffusion in a fluid simultaneously undergoing shear 
flow is analysed for the simple case of uniform shear. Solutions for instantaneous 
point and line sources are obtained using Fourier transform methods and the results 
are presented in some detail. The solutions also describe the diffusion of heat from 
an instantaneously heated source in a fluid undergoing a similar shear pattern. 

1. INTRODUCTION 

A study of the transport of matter or heat under simultaneous conditions 
of diffusion (either laminar or turbulent) and convection is presented. 
Fortunately, the basic analysis is the same whether the problem is one of dispersion 
during flow through a porous medium, dispersion in a turbulent flow field, or 
heat dispersion in laminar or turbulent flow fields. 

The problem of steady-state heat transfer in a liquid undergoing laminar 
flow between parallel plates has been examined by Prins, Mulder, and Schenk 
(1951) and Dennis and Poots (1956). The dynamic case of diffusion into a 
turbulent atmosphere of an instantaneous point source has been analysed by 
Davies (1954) but under conditions of constant horizontal convective velocity. 
The diffusion of a heated spot in a uniform shear field (different in form from the 
present analysis) has been studied by Townsend (1951). Novikov (1958) studied 
the problem of turbulent diffusion in a shear field having a transverse gradient 
of velocity. 

The movement of nutrients in the soil solution to the plant root surface is a 
combined process of mass flow (convection) with the soil water and diffusion. 
A recent article by Barber (1962) gives an excellent descriptive outline of the 
various mechanisms involved. It is not suggested that this solution can be 
used at present to describe the movement of nutrients in porous media as the 
boundary conditions governing the microscopic flow are indescribably complex. 
However, this mathematical approach is a first step in the quantitative study of 
this problem. 

This analysis is restricted to the simple convective case of uniform shear 
flow. Some of the mathematical techniques employed by Novikov are similar 
to those developed independently for this study and, where possible, the 
similarities and differences are indicated. 
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II. FUNDAMENTAL EQUATIONS 

The general equation describing simultaneous diffusion and convection in 
a fluid may be written as 

06*jot*+V*,V*6*=DV*26*, (1) 

where 6* is the concentration of diffusing substance, D is the (constant) diffusion 
coefficient, and V* is the velocity which, in general, could be a function of the 
Oartesian coordinates x*, y*, z*, and the time t*. 

In this analysis the velocity is assumed to have only an x*-component which 
is given by 

V*=ky*, (2) 

where k is a positive constant. 

Assuming uniform shear flow, (1) may be rewritten as 

06*jot* +ky*06*jox* =DV*26*. (3) 

It is convenient to write (3) in reduced form by means of the following 
transformation: 

x=(kjD)iX*; y=(kjD)ly*; z=(kjD)iz*, 
t=kt*, 
6 =(kjD)-3126*. 

Equation (3) may now be expressed as 

where 
06jot+y06jox=V26, 

V = V*j(kD)i=y. 

III. SOLUTION 

(4) 
(5) 
(6) 

(7) 

(8) 

We shall consider the problem of diffusion in a fluid undergoing uniform 
shear flow in a triply infinite medium when the initial concentration is given by 

6 f(x,y,z), t=O. (9) 

The following transformation on the independent variables is similar to that 
suggested by Novikov and allows us to eliminate the convective term from (7) : 

u=x-yt; v=y; w=z; 
8=t. 

On substitution, (7) becomes 

(1 +82)026jou2 -28026jouov +026jov2 +026jow2 =06j08, 

and the initial condition (9) is now given by 

f(x,y,z) =f(u,v,w). 

(10) 
(11) 

(12) 

(13) 

The triple Fourier transform was found convenient in solving (12) subject 
to (13). Novikov solved a similar equation by applying a two-sided Laplace 
transform to the variables u, v, and w. 
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The notation used for the triple Fourier transform is defined as 

0(~,1),~)=(27t)-3J2f:""f:(xJ:oo 6(u,v,w) exp [i(~u+1)v+~w)]dudvdw. (14) 

On multiplying both sides of (12) by exp [i(~u+1)v+~w)] and integrating with 
respect to u, v, and w from - 00 to 00, we find that the transform 0 satisfies the 
first-order ordinary differential equation 

d0/ds = _(~2 +1)2 +~2)0 +2~1)s0 _~2S20, 

subject to the initial condition that 

0=F(~,1),~), when s=O. 

The function F(~,1),~) is therefore the transform of j(u,v,w). 

On solution of (15) subject to (16) we have 

0=F(~,1),~) exp [_(~2+1)2+~2)S+~1)S2_l~2S3]. 

The function G(~,1),~) is defined as follows: 

G(~,1),~)-exp [_(~2+1)2+~2)S+~1)S2_l~2S3]. 

Now the Fourier transform of G(~,1),~) is given by 

(15) 

(16) 

(17) 

(18) 

g(u,v,w) = J:oof:oof:oo G(~,1),~) exp [-i(~u+1)v+~w)]d~d1)d~. (19) 

Substituting (18) into (19) and performing the integrations gives 

g(u,v,w) =y3/[4(7tS)3/2(S2+ 12)1] '{exp - [3(u +tsv)2/s(s2+12) +v2/4s+W2/4s]}. 

Equation (17) may now be rewritten as 
(20) 

o =F(~,1),~)G(~,1),~). (21) 

The solution 6(u,v,w,s) is then given by 

The Faltung theorem for Fourier transforms extended to three variables 
(Sneddon 1951) states that 

f:oof:oof:oo F(~,1),~)G(~,1),~) exp [--i(~u+1)v+~w)]d~d1)d~ 
= f:oof:"J:"" j(u',v',w')g(u-u',v-v',w-w')du'dv'dw'. (23) 

Utilizing this theorem gives 

6(u,v,w,s) =y3/[4(7ts)3/2(s2+12)!] f: oof:oof: "" j(u',v',w') 

. {exp -{3 [(u -u') + ts(v -v')] 21s(S2 +12) +(v -v')2j4s 
+(w-w')2/4s} }du'dv'dw'. (24) 
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Transforming back into the reduced variables gives 

6(x,y,z,t) =y3j[4(nt)3/2(t2 +12)!] f:,xJ: .,J:OO !(X',y',Z') 

. {exp -{3 [(x -x') - !t(y +y')] 2jt(t2 + 12) +(y -y')2j4t 
+(z-z')2/4t} }dx'dy'dz', (25) 

where the variables of integration have been changed from u',v',w' to x',y',z'. 

IV. INSTANTANEOUS POINT SOURCE 

The source function for an instantaneous point source is then given by 

6(x,y,z,t) =y3Mj[4(nt)3/2(t2 +12)!] 

. {exp -{3[(x-x') - !t(y +y')] 2jt(t2 +12) +(y -y')2j4t+(z+Z')2/4t} }, 
(26) 

where M is the amount of diffusing substance. This is consistent with the 
solution obtained by Novikov. 
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Fig. l.-Concentration-distance (x-direction) curves for an instant­
aneous point source located at the origin with y and z held constant 
at the points 1 and 0 respectively. Numbers on curves denote values 

of t. 

As t-+O the expression tends to zero at all points except (x',y',z'), where it 
becomes infinite. The expression also tends to zero as either x, y, or z approach 
infinity positively or negatively for t>O. Equation (26) is symmetrical with 
respect to the plane parallel to the XY-plane and passing through the point 
(x',y',z') and if (x',y',z') is at the origin, the expression is then symmetrical about 
the origin as well. 

Also, the total amount of diffusing substance in the infinite region is given 
by 

(27) 
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Thus (26) describes the spreading by diffusion in an infinite medium under­
going uniform shear flow of the form V =y of an amount of substance M deposited 
at time t=O at a point (x',y',z'). 

Figure 1 shows typical distributions of fJlM as a function of x with y and z 
held constant at the points 1 and 0 respectively. The point source is taken to 
be at the origin. The shift in peak concentration in the positive x-direction is 
obvious. 

The surfaces of constant concentration are diffusion ellipsoids whose size, 
eccentricity, and direction are time dependent. For ease of preseI).tation, similar 
data are presented for the line source in the two-dimensional case. 

-3 

-4 

Fig. 2.-Diffusion ellipses of constant concentration where the ratio 
e;M is arbitrarily fixed at 0·0l. Numbers on curves denote values of t. 

V. INSTANTANEOUS LINE SOURCE 

The solution for an instantaneous line source parallel to the z-axis and passing 
through the point (x',y') can be obtained by integrating (26). Oonsider a distribu­
tion of instantaneous point sources of amount Mdz' at z' along the line. The 
concentration, obtained by multiplying (26) by dz' and integrating from - 00 

to 00 is 
fJ(m,y,t) =V3MI[27tt(t2+12)t] 

. {exp -{3[(x-x') -tt(y +y')]2lt(t2 +12) +(y -y')2/4t} }. (28) 

Figure 2 shows typical diffusion ellipses of constant concentration for three 
successive times. The ratio fJlM was arbitrarily fixed at 0·01. Like the point 
source, the size, eccentricity, and direction of the ellipses are time dependent. 
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