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Summary 

The magnetic moments of the proton and neutron are computed for the 
pseudoscalar-pseudovector symmetric meson field considering the magnetic moments 
as the time average of the proton and the meson magnetic moments. Using the 
perturbation theory, the meson contribution is calculated from the self-energy of a 
nucleon in presence of a weak homogeneous magnetic field where the term due to 
meson magnetic energy was introduced from the expression for the force exerted 
on the emitted meson by the magnetic field. The self-energy is made finite with the 
idea of a fundamental length as introduced by Heisenberg and the cut-off so obtained 
fits exactly with that suggested by Chew in the extended-source theory. It is also 
found that mesons need to be present only about 25% of the time to explain the 
observed magnitudes of the anomalous nucleon magnetic moments. 

1. INTRODUCTION 

Using the covariant formalism and renormalization technique, several attempts 
(Bethe and De Hoffmann 1955) have been made to explain the well-known deviation 
of the nucleon magnetic moment from that obtained by Dirac. But the experimental 
agreement is far from satisfactory. The dispersion-theoretic approach (Frazer and 
Fulco 1960), however, has considerable success in solving the anomaly in the nucleon 
magnetic moment although the basic assumptions inherent in such a approach are 
yet to be verified rigorously. On the other hand the study of the extended source 
model in meson theory (Ohew 1954) gives considerable insight into the low energy 
phenomena where the nucleon can be treated non-relativistically. And so far as the 
nucleon magnetic moment is concerned the experimental agreement is quite promis
ing (Kundu 1958). In view of these facts it is interesting to investigate the problem 
in the non-relativistic approximation using the perturbation theory. 

The present paper is an attempt to explain the nucleon magnetic moments 
with the assumption that the magnetic moment of the proton is due to the free 
proton for (I-E) seconds plus the free neutron with the positively charged meson 
for E seconds. Assuming charge conservation, the contributions are evaluated from 
the self-energy of a nucleon during its emission and reabsorption of a pseudoscalar 
charged meson in presence of a weak homogeneous magnetic field. From dimensional 
analysis the meson magnetic energy is defined as the force exerted on it per wave 
number. The usual perturbation theory adopted here results in an infinite self-energy 
and is made finite with the introduction of a fundamental length (Heisenberg 1938) 
that restricts the emission of mesons by a nucleon at rest with wave number greater 
than a certain value. The cut-off limit so obtained is found to be consistent with 
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that suggested by Chew in the non-relativistic theory. The ratio of the anomalous 
neutron magnetic moment to that of proton is found here to be independent of the 
coupling constant and the cut-off limit and agrees well with that obtained experi
mentally. The meson also couples with neutron and proton for approximately 
one-quarter of the total time, a feature which is interesting and significant for the 
present problem. 

II. THEORETICAL PROCEDURE 

As stated in the introduction, the magnetic moment of the proton /LP correspond
ing to the process 

is given by 

(1) 

where €/L1T+ is related to the proton self-energy in the magnetic field, and /LO, /Lo, /L1T+ 

denote respectively the magnetic moments of the free proton, neutron, and charged 
meson. 

From the perturbation theory, the self-energy of a proton is well known to be 

W p = (H01Hio)/(Eo-E1), (2) 

where HOI is the matrix element for the emission of a positively charged pseudoscalar 
meson by the proton, Hio is the matrix element for the absorption of the same meson 
by the same proton and Eo,EI are the energies in the initial and intermediate states 
of the system. 

Now, writing the pseudoscalar charged meson field interaction density in the 
form (March 1951) 

with 

and g,! as the strength of the interaction, we find for a nucleon at rest 

(4) 

where we put if/ = GIX(jY{j and the index "0" signifies that the gradient is to be taken 
at the point occupied by the nucleon. 
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The emission and absorption matrix element for a positively charged pseudo
scalar meson will then be (on using (4)) 

(5) 

and 

H ' . t'f (lic)l n~,n~-1 = IX 'TPN 2V 

(6) 

where k1i = p, is the momentum of the emitted virtual meson, X = m 1Tc/1i (m1T = meson 
mass), and V is the volume in which the functions are assumed to be periodic. 

Since the meson is subjected to a weak homogeneous magnetic field, the matrix 
element for single meson emission and absorption processes reduces to 

I • t * (1) (liC )t", ( lic )t (1) • (1) (HOl)H = -IX'! 'TPN 2V "-' 2 2 (0" .k)exp(Ik.ro), 
k 1ic~(k +X )+E1T+,H 

(7) 

and 

I • i (1) (liC )1",( lic )t (1) .k (1) 
(HlO)H = IX '!'TNP 2V "-' 2 2 (0" . k)exp( -1 . ro ), 

k lic~(k +X )+E1T+,H 
(8) 

where E 1T+,H denotes the energy of a positive meson in the magnetic field H. 

In presence of the magnetic field we find also that for € seconds 

(9) 

since Ep=EN and for the above interval of time the proton magnetic energy Ep,H=O. 

Now, on using the relations (7), (8), and (9) we get from (2), the self-energy of 
the proton in the direction of the magnetic field as 

{.k (1) (1) } 
"'( (1) k)( (1) k) lic exp 1 • (ro -ro ) 

X,,-,O" • 0" . 2 2 2' 
k -[1ic~(k +X )+(/k1T+)H] 

(10) 
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On simplification (10) reduces to 

* n2c2 k2 
W P H = - xff -~ ---:::-----::-----------: 

, 6V k [nc~(k2+l)+(I_'_11+)Ht (11) 

Replacing ~ by the integral 
k 

rdnr~k2dk 
)' ) (27T)3 

and multiplying both the numerator and denominator by [nc~(k2+l)-(I_'_11+)H]2, we 
obtain on neglecting terms containing higher powers in H, 

(12) 

The force acting on a meson of momentum p and charge e, emitted by a nucleon 
at rest, in presence of a magnetic field H is given by 

F = (e/m11c) . p xH 
= (en/m11c)trrkH, 

where the angle between p and His (J and (sin (J)av. = t7T. 
Now, from the dimensional consideration we define the meson magnetic 

energy as 

E11 ,H = F/k. 

Thus for neutral meson 

(13) 

and for charged meson 

E 11±,H = ±trr(en/m11c)H. (14) 

Using (1) and (12), we find 

2 (ff*) i oo k4 dk 
€1_'_11+ = 3- 4-; 1_'_11+ 2 2 3/2' 

7T 'TrnC 0 (k +x ) 
(15) 

The integral in (15) leads to an infinite value of €, i.e. of I_'_P' and is made finite 
with the introduction of a fundamental length, according to which it is not possible 
to invent an experiment of any kind that permits a distinction between the positions 
of two particles at rest, the distance of which is below a certain limit d-the funda
mental length. Thus we get an upper limit of the momentum p as hid and that 
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mesons with wave number k greater than (27Tjd) can not be emitted by a nucleon at 
rest. It is expected that d should not exceed the value of the nuclear range Ijx and 
which in turn gives kmax. :(; 27Tx. 

The equation (15) thus transforms to 

(16) 

Now, on evaluating the neutron-proton interaction potential with the matrix 
element given by (7) and (8) it will be easily seen that (ff*X3 j47T1ie) corresponds to 
the coupling constant and taking its value to be 0 ·058 (Kundu 1958), we find from (16) 

€ = 0·21, 

and from (1), the proton magnetic moment 

fJ-p = 2· 991fJ-o, 

where we put Mpjm." = 6·67. 

Proceeding exactly as in the case of proton with the scheme 

and noting that 

(17) 

the self-energy of the neutron in the direction of the magnetic field H is found to be 

,,2 2 
one 

W N,H = -hff -2 
47T 

Multiplying both the numerator and denominator by 

[/i2e2(k2 +i)-2/ie~(k2 +x2)(fJ-."-)H(I-i7Tm.,,jM p) + (fJ-;_)H2(1-!7Tm."jM p)) 

and retaining terms linear in H, we obtain 

(18) 

(19) 
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As before we write for the neutron magnetic moment 

(20) 

where (f/fLO + €'fL1T-) win cOITespond to the coefficient of H iIi W N,H. 

Thus, we get from (19) and (20) 

which finally gives 
€' = 0·22,* (21) 

where the upper limit of the integral is taken as 27TX. 
The neutron magnetic moment will therefore be 

fLN = -2 ·OS6fLo, 

and the anomalous ratio of the neutron to the proton magnetic moment reduces to 

It is worth while to mention that the more exact expression for the energy should 
be given by 

E = rx(Fjk), 
where rx is a numericaJ factor. 

Proceeding exactly as in the case with rx = 1, one can easily find that agreement 
with the experimental results is possible for rx = 1· 25 and (ff*lj4rrlic) = o· os. This 
estimate of the value ofthe coupling constant is consistent with that obtained from the 
dispersion theoretic calculations and for a = 1·25 the meson magnetic energy reduces 
to ,.....,(elijm1Tc). 

III. DISCUSSION 

The present approach explains quite successfully the neutron and proton 
magnetic moment with the same value of the cut-off limit and coupling constant as 
used in the non-relativistic theory. The fact that meson needs to be present for 25% 
of the time is an interesting feature of the present procedure and may have some 
useful consequences to be exploited experimentally. The idea of removing the infinity 
with the introduction of a fundamental length, however, leads to a non-relativistic 
theory and the value of the coupling constant may impart certain inaccuracy. It is 
worth mentioning that in spite of many shortcomings of the perturbation theory it 
could well explain the nucleon magnetic moments. The effect of nucleon recoil may 
be considered with the idea of reduced mass. 

* According to the principle of charge independence the time average £ for P--+N +11+ 

should be equal to £' for N --+ P + 11-. However, this may not be true in the presence of a magnetic 
field. And it can be seen from the present approach that this violation of the charge independence 
has considerable effect on the difference in the neutron and proton anomalous magnetic moments. 
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