ON THE ACCURACY OF THE TAN η_{l} DISTORTED WAVE APPROXIMATION FOR SCATTERING PHASE-SHIFTS

By P. Swan*
[Manuscript received December 5, 1962]

Summary

The distorted wave approximation for $\tan \eta_{l}$ involves a wave function distorted from its asymptotic form at $r \rightarrow \infty$ by a form factor $g_{l}(r)$. Schwinger's variational principle is adapted to show that increasing the number of variable parameters in $g_{l}(r)$ does not necessarily improve the first-order fit to the scattering parameters. Results are given for ${ }^{3} \mathrm{~S}$ and ${ }^{1} \mathrm{~S}$ neutron-proton scattering for several potential well shapes, including the effective range r_{0} and first shape parameter P_{0}.

It is concluded that the distorted wave method gives maximum accuracy with a simple form factor with only one variable parameter λ_{l}, adjusted to fit the zero-energy scattering length a_{l}. The use of additional parameters is not in general justified by the results.

I. Introduction

The distorted wave approximation for elastic scattering phases is given by (Swan 1960a, 1960b, 1960c, 1961)

$$
\begin{equation*}
\tan \eta l \approx B_{1 l} /\left(1-B_{2 l}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
B_{1 l} & =-\frac{1}{k} \int_{0}^{\infty} \mathrm{d} r U(r) \mathscr{\mathscr { L }}_{l}^{2}(k r)=\eta_{l}(\text { B.O. }), \\
B_{2 l} & =\frac{1}{k} \int_{0}^{\infty} \mathrm{d} r U(r) g_{l}(r) \mathscr{J}_{l}(k r) \mathscr{N}_{l}(k r) . \tag{2}
\end{align*}
$$

Here $U(r)=\left(2 \mu / \hbar^{2}\right) V(r), \mu$ being the reduced mass of the two-body system, and $V(r)$ the interaction potential. The modified spherical Bessel and Neumann functions $\mathscr{J}_{l}(x)$ and $\mathscr{N}_{l}(x)$ are

$$
\mathscr{J}_{l}(x)=x j_{l}(x), \quad \mathscr{N}_{l}(x)=x n_{l}(x)
$$

where $j_{l}(x)$ and $n_{l}(x)$ are the spherical Bessel and Neumann functions as defined by Schiff (1949).

The form factor $g_{l}(r)$ must satisfy the boundary conditions

$$
g_{l}(r \rightarrow 0) \approx r^{2 l+1}, \quad g_{l}(r \rightarrow \infty)=1
$$

[^0]For tailed potentials, a suitable form for $g_{l}(r)$ has been found to be (Swan 1960c) the two-parameter function

$$
\begin{equation*}
g_{l}(r)=A_{l} r^{2 l+1} \phi_{l}\left(\lambda_{l}, r\right)+\left[1-\phi_{l}\left(\lambda_{l}, r\right)\right]^{2 l+1}, \tag{3}
\end{equation*}
$$

where $\phi_{l}\left(\lambda_{l}, r\right)$ is taken with a similar form to the potential $V(r)$ (or as nearly as is practicable). In particular, $\phi_{l}\left(\lambda_{l}, r\right)$ must satisfy the conditions

$$
\phi_{l}\left(\lambda_{l}, 0\right)=1, \quad \phi_{l}\left(\lambda_{l}, \infty\right)=0 .
$$

Earlier calculations for $l=0$ took $\phi_{l}\left(\lambda_{l}, r\right)$ with the same range parameter as $V(r)$, corresponding to $\lambda_{0}=1$, with A_{0} determined to give the correct zero energy scattering length a_{0} (Swan 1960c). Computed results for the phase-shift η_{0} and effective range r_{0} were in good agreement with exact figures, except for singular potentials such as the Yukawa interaction, where the agreement was fair.

The purpose of the present paper is to show that it is in general not practicable to fit exactly higher parameters in the shape-independent expansion for k cot η_{l} by increasing the number of adjustable parameters in equation (3) for $g_{l}(r)$. For example, the effective range r_{l} cannot in general be fitted exactly by adjusting λ_{l}. This means that equation (1) for $\tan \eta_{l}$ cannot be made as accurate as one likes by putting more parameters in $g_{l}(r)$, results being characteristically insensitive to minor adjustments of $g_{l}(r)$.

It is possible, however, to use a variational principle for $k \cot \eta_{l}$ to improve somewhat the fit for η_{l}, the parameter λ_{l} in equation (3) being taken as adjustable. The improvement in accuracy is appreciable in those cases where the error is largest, such as the Yukawa potential, but is negligible where η_{l} is already fitted to $2-3 \%$ accuracy.

If the one-parameter form factor for $A_{l}=0$,

$$
\begin{equation*}
g_{l}(r)=\left[1-\phi_{l}\left(\lambda_{l}, r\right)\right]^{2 l+1} \tag{4}
\end{equation*}
$$

is used instead of equation (3), and λ_{l} is varied to fit a_{l}, results of equivalent accuracy are attained for η_{l}. In some cases, viz. $\phi_{0}\left(\lambda_{0}, r\right)=\exp \left(-\lambda_{0} r / b\right)$, the variational method above gives $A_{0}=0$, and hence relation (4) for $g_{l}(r)$. In general, however, equation (4) gives as good an accuracy for η_{l} as is attainable, and the use of extra parameters, as in (3), does not give better fits to the effective range and shape parameters.

II. The Shape-independent Formula for Arbitrary l

If we expand $\mathscr{J}_{l}(k r)$ and $\mathscr{N}_{l}(k r)$ in power series, we find from (2) the expansions (Swan 1963)

$$
\left.\begin{array}{l}
B_{1 l}=\frac{k^{2 l+1}}{[(2 l+1)!!]^{2}}\left[M_{2 l+2}-\frac{1}{(2 l+3)} M_{2 l+4} k^{2}+\frac{(l+2)}{(2 l+3)^{2}(2 l+5)} M_{2 l+6} k^{4}+\ldots\right], \tag{5}\\
B_{2 l}=\frac{1}{(2 l+1)}\left[P_{l 1}+\frac{2 P_{l 3}}{(2 l-1)(2 l+3)} k^{2}+\frac{6 P_{l 5}}{(2 l-1)\left(4 l^{2}-9\right)(2 l+5)} k^{4}+\ldots\right],
\end{array}\right\}
$$

where

$$
\begin{equation*}
M_{n}=-\int_{0}^{\infty} \mathrm{d} r U(r) r^{n}, \quad P_{l n}=-\int_{0}^{\infty} \mathrm{d} r g_{l}(r) U(r) r^{n} \tag{6}
\end{equation*}
$$

Equations (1) and (5) lead to the result

$$
\begin{equation*}
[(2 l+1)!!]^{-2} k^{2 l+1} \cot \eta_{l}(k)=-1 / a_{l}+\frac{1}{2} r_{l} k^{2}-P_{l} r_{l}^{3} k^{4}+\ldots, \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
-1 / a_{l} & \approx \frac{1}{M_{2 l+2}}\left[1-P_{l 1} /(2 l+1)\right] \tag{8}\\
r_{l} & \approx \frac{2}{(2 l+3) M_{2 l+2}}\left[\frac{2}{\left(1-4 l^{2}\right)} P_{l 3}-M_{2 l+4} / a_{l}\right] \tag{9}\\
-P_{l} r_{l}^{3} & \left.\approx \frac{1}{2(2 l+3) M_{2 l+2}}\left[M_{2 l+4} r_{l}+\frac{2}{(2 l+5)}\left(\frac{l+2}{2 l+3}\right) \frac{M_{2 l+6}}{a_{l}}-\frac{6 P_{l 5}}{(2 l-3)\left(4 l^{2}-1\right)}\right\}\right] \tag{10}
\end{align*}
$$

Equation (7) for small $k r_{l}$ is the shape-independent formula for scattering, generalized to arbitrary l values (Blatt and Jackson 1949; Chew and Goldberger 1949), so that a_{l}, r_{l}, and P_{l} in equations (8)-(10) are interpreted as approximate forms of the zero energy scattering length, effective range, and first shape parameter respectively. The shape parameter P_{0} has been previously misquoted (Swan 1960b).

It is well known that the convergence of relation (7) becomes rapidly poorer as l increases, so that its practical usefulness has been largely restricted to the $l=0$ case (Chew and Goldberger 1949). However, it may readily be treated by a variational principle for $k \cot \eta_{l}$.

III. Schwinger's Variational Principle for Arbitrary l

Blatt and Jackson (1949) have given Schwinger's variational principle for S-wave scattering. An extension to arbitrary l-values involves rewriting the wave equation in the integral equation form (Swan 1961)

$$
\begin{equation*}
\psi_{l}(r)=\mathscr{J}_{l}(k r) \cos \eta_{l}-\int_{0}^{\infty} \mathrm{d} r^{\prime} G_{l}\left(r, r^{\prime}\right) U\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right) \tag{11}
\end{equation*}
$$

where the Green's function is

$$
\begin{equation*}
G_{l}\left(r, r^{\prime}\right)=-(1 / k) \mathscr{J}_{l}\left(k r_{<}\right) \mathscr{N}_{l}\left(k r_{>}\right) \tag{12}
\end{equation*}
$$

$r_{<}$and $r_{>}$being the smaller and larger of r, r^{\prime} respectively.
The asymptotic wave function is taken as

$$
\begin{equation*}
\psi_{l}(r \rightarrow \infty)=\mathscr{J}_{l}(k r) \cos \eta_{l}-\mathscr{N}_{l}(k r) \sin \eta_{l}, \tag{13}
\end{equation*}
$$

whereas equations (11) and (12) give the result

$$
\begin{equation*}
\psi_{l}(r \rightarrow \infty)=\mathscr{J}_{l}(k r) \cos \eta_{l}+\frac{1}{k} \mathscr{N}_{l}(k r) \int_{0}^{\infty} \mathrm{d} r^{\prime} \mathscr{J}_{l}\left(k r^{\prime}\right) U\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right) \tag{14}
\end{equation*}
$$

Comparison of equations (13) and (14) leads to the integral equation for the phase

$$
\begin{equation*}
\sin \eta_{l}=-\frac{1}{k} \int_{0}^{\infty} \mathrm{d} r^{\prime} \mathscr{J}_{l}\left(k r^{\prime}\right) U\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right) \tag{15}
\end{equation*}
$$

We multiply relation (11) by $U(r) \psi_{l}(r)$, integrate between the limits 0 and ∞, and employ equation (15) to find

$$
\begin{equation*}
-k \cot \eta_{l}=\frac{\int_{0}^{\infty} U(r) \psi_{l}^{2}(r) \mathrm{d} r+\int_{0}^{\infty} \mathrm{d} r \int_{0}^{\infty} \mathrm{d} r^{\prime} U(r) \psi_{l}(r) G_{l}\left(r, r^{\prime}\right) U\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right)}{\left[\frac{1}{k} \int_{0}^{\infty} \mathrm{d} r^{\prime} \mathscr{J}_{l}\left(k r^{\prime}\right) U\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right)\right]^{2}} \tag{16}
\end{equation*}
$$

One may consider (15) as a variational principle for $k \cot \eta_{l}$, as it is stationary for small increments $\delta \psi_{l}$ and $\delta \eta_{l}$ in wave function ψ_{l} and phase η_{l} respectively. This means

$$
\delta\left(k \cot \eta_{l}\right)=0
$$

under the operation

$$
\psi_{l} \rightarrow \psi_{l}+\delta \psi_{l}, \quad \eta_{l} \rightarrow \eta_{l}+\delta \eta_{l},
$$

as is easily verified by substitution in equation (16).

IV. Variation Method for the Form Factor $g_{l}\left(\lambda_{l}, r\right)$

We may apply Schwinger's variational principle to the approximate expansion (7), where equations (8)-(10) give us $a_{l}, r_{l}, P_{l}, \ldots$ as functions of the two parameters A_{l} and λ_{l}, via the form factor $g_{l}\left(\lambda_{l}, r\right)$ of equation (3). If the zero-energy scattering length a_{l} is kept constant at the correct value, then A_{l} is no longer an independent parameter, so that $A_{l}=A_{l}\left(\lambda_{l}\right)$. Subject to this restriction, we take $\psi_{l} \rightarrow \psi_{l}+\delta \psi_{l}$ as equivalent to $\lambda_{l} \rightarrow \lambda_{l}+\delta \lambda_{l}$, leading to

$$
\delta\left(k \cot \eta_{l}\right)=0 .
$$

The constancy of a_{l} gives us

$$
\begin{equation*}
\partial a_{l} / \partial \lambda_{l}=0 \tag{17}
\end{equation*}
$$

and the stationary property of $k \cot \eta_{l}$ leads to

$$
\begin{equation*}
\partial r_{l} / \partial \lambda_{l}=0 \tag{18}
\end{equation*}
$$

the latter equation being valid for η_{l} at low energies ($k r_{l} \leqslant 1$), where the shapedependent terms in the expansion (7) are negligible.

On employing equations (8) and (9), relations (17) and (18) become

$$
\begin{equation*}
\partial P_{l 1} / \partial \lambda_{l}=\partial P_{l 3} / \partial \lambda_{l}=0 \tag{19}
\end{equation*}
$$

From equations (19), (6) and (3), we define the integrals

$$
\left.\begin{array}{rl}
I_{n l} & =-\int_{0}^{\infty} \mathrm{d} r \cdot r^{n} U(r) \phi_{l}\left(\lambda_{l}, r\right), \tag{20}\\
J_{n l} & =\int_{0}^{\infty} \mathrm{d} r \cdot r^{n} U(r) \frac{\partial \phi_{l}}{\partial \lambda_{l}}, \\
K_{n l} & =\int_{0}^{\infty} \mathrm{d} r \cdot r^{n} U(r) \frac{\partial \phi_{l}}{\partial \lambda_{l}}\left[1-\phi_{l}\left(\lambda_{l}, r\right)\right]^{2 l},
\end{array}\right\}
$$

so that equation (19) becomes

$$
\left.\begin{array}{l}
-I_{2 l+4, l} \partial A_{l} / \partial \lambda_{l}+J_{2 l+4, l} A_{l}=(2 l+1) K_{3, l} \tag{21}\\
-I_{2 l+2, l} \partial A_{l} / \partial \lambda_{l}+J_{2 l+2, l} A_{l}=(2 l+1) K_{1, l}
\end{array}\right\}
$$

with solution

$$
\left.\begin{array}{r}
A_{l}=(2 l+1)\left(I_{2 l+2, l} K_{3, l}-I_{2 l+4, l} K_{1, l}\right) /\left(I_{2 l+2, l} J_{2 l+4, l}-I_{2 l+4, l} J_{2 l+2, l}\right), \\
\partial A_{l} / \partial \lambda_{l}=(2 l+1)\left(J_{2 l+2, l} K_{3, l}-J_{2 l+4, l} K_{1, l}\right) /\left(I_{2 l+2, l} J_{2 l+4, l}-I_{2 l+4, l} J_{2 l+2, l}\right) \tag{22}
\end{array}\right\}
$$

We see that, given the correct value of a_{l}, equation (8) leads to λ_{l}, and equation (9) to r_{l}.

S-wave Scattering

For $l=0$, the definition (20) shows that

$$
K_{n, 0}=J_{n, 0}
$$

while equation (8) becomes

$$
\begin{equation*}
A_{0} I_{2,0}-I_{1,0}=1+M_{2,0} / a_{0}-M_{1,0} \tag{23}
\end{equation*}
$$

This may be solved numerically for λ_{0}, and equations (9) and (10) give one

$$
\begin{align*}
r_{0} & =\left(2 / 3 M_{2,0}\right)\left[2\left(A_{4,0} I_{4,0}+M_{3,0}-I_{3,0}\right)-M_{4,0} / a_{0}\right], \tag{24}\\
-P_{0} r_{0}^{3} & =\left[\frac{1}{6} M_{4,0} r_{0}+(2 / 45) M_{6,0} / a_{0}-(2 / 15)\left(A_{6,0} I_{6,0}+M_{5,0}-I_{5,0}\right)\right] . \tag{25}
\end{align*}
$$

A particularly simple and important case occurs for

$$
\begin{equation*}
\phi_{0}\left(\lambda_{0}, r\right)=\exp \left(-\lambda_{0} r / r_{P}\right) \tag{26}
\end{equation*}
$$

where r_{P} is the potential range parameter. Equation (21) becomes

$$
r_{P} I_{4,0} \partial A_{0} / \partial \lambda_{0}=A_{0} I_{5,0}-I_{4,0}, \quad r_{P} I_{2,0} \partial A_{0} / \partial \lambda_{0}=A_{0} I_{3,0}-I_{2,0}
$$

with solution

$$
\begin{equation*}
A_{0}=0, \quad \partial A_{0} / \partial \lambda_{0}=-1 / r_{P} \tag{27}
\end{equation*}
$$

equations (23) and (24) for λ_{0} and r_{0} still applying.

V. Application to Neutron-Proton Scattering

We take as basis parameters derived from the liquid mirror reflection of subthermal neutrons (Hughes, Burgy, and Ringo 1950; Ringo, Burgy, and Hughes 1951; Salpeter 1951; Mather and Swan 1958). These values of a_{0} and r_{0} are given in Table 1, together with approximate values of the shape parameter P_{0} and the shape correction term $P_{0} r_{0}^{3}$ for several simple well shapes, P_{0} being taken from Figure 10 of Blatt and Jackson (1949).

Table 1
SCATTERING PARAMETERS FOR NEUTRON-PROTON SCATTERING

Potential	$\begin{gathered} { }^{3} \mathrm{~S} \text { n-p } \\ a_{0}=5.38 \mathrm{fm}, r_{0}=1.70 \mathrm{fm} \end{gathered}$		$\begin{gathered} \text { 1S n-p } \\ a_{0}=-23 \cdot 69 \mathrm{fm}, r_{0}=2 \cdot 7 \mathrm{fm} \end{gathered}$	
	P_{0}	$P_{0} r_{0}^{3}$	P_{0}	$P_{0} r_{0}^{3}$
Gaussian Exponential Yukawa	$\begin{array}{r} -0.018 \\ 0.030 \\ 0.145 \end{array}$	$\begin{array}{r} -0.088 \\ 0 \cdot 147 \\ 0.712 \end{array}$	$\begin{array}{r} -0.016 \\ 0.008 \\ 0.046 \end{array}$	$\begin{array}{r} -0.315 \\ 0 \cdot 158 \\ 0.905 \end{array}$

In subsequent calculations, we use the form factor (3) for $l=0$. Expressions used for $\phi_{0}\left(\lambda_{0}, r\right)$ in $g_{0}(r)$ are given in Table 2 for ${ }^{3} \mathrm{~S}$ and ${ }^{1} \mathrm{~S} \mathrm{n}-\mathrm{p}$ scattering for several well shapes, together with the corresponding well depths V_{0} and parametric ranges r_{P}. The latter quantities were derived from interpolation formulae of Blatt and Jackson (1949), assuming a_{0} and r_{0}.

Table 2
potential parameters for neutron-proton scattering

$V(r)$	$\phi_{0}(r)$	${ }^{3} \mathrm{~S}$ n-p		${ }^{1} \mathrm{~S}$ n-p	
		$V_{0}(\mathrm{MeV})$	$r_{P}(\mathrm{fm})$	$V_{0}(\mathrm{MeV})$	$r_{P}(\mathrm{fm})$
$-V_{0} \exp \left(-r^{2} / r_{p}^{2}\right)$	$\exp \left(-\lambda r^{2} / r_{p}^{2}\right)$	$72 \cdot 117$	$1 \cdot 4837$	32-194	$1 \cdot 7850$
$-V_{0} \exp \left(-r / r_{P}\right)$	$\exp \left(-\lambda r / r_{P}\right)$	216.718	$0 \cdot 62798$	$109 \cdot 467$	$0 \cdot 71233$
$-V_{0} \exp \left(-r / r_{P}\right) /\left(r / r_{P}\right)$	$\exp \left(-\lambda r / r_{P}\right)$	$42 \cdot 237$	$1 \cdot 5636$	47-701	$1 \cdot 1706$

In Table 3, we give results based on the form factor (3) for $l=0$ and the potentials of Table 2, using several alternative procedures $(a),(b),(c)$:
(a) We put $\lambda_{0}=1$ in $\phi_{0}\left(\lambda_{0}, r\right)$, with A_{0} chosen to give a_{0} correctly in (23), r_{0} and P_{0} coming from equations (24) and (25).
(b) This procedure uses the stationary property of $k \cot \eta_{0}$, so that equations (22) and (23) give A_{0} and λ_{0}, the latter parameters being chosen to make r_{0} stationary and to give a_{0} correctly, respectively.
(c) We put $A_{0}=0$, thus using (4) instead of (3) for the form factor $g_{0}(r)$. Equation (23) is solved for λ_{0}, assuming the correct value of a_{0}, and r_{0} and P_{0} are evaluated from (24) and (25).

Numerical results for ${ }^{3} \mathrm{~S}$ and ${ }^{1} \mathrm{~S}$ n-p scattering, using Gaussian, exponential, and Yukawa interactions, are given in Table 3. For exponential and Yukawa potentials, we use (26) for $\phi_{0}(r)$, so that cases (b) and (c) above are the same, as $A_{0}=0$ in each.

Table 3
scattering parameters in the distorted wave approximation
(a) $\lambda_{0}=1 \cdot 0$, (b) λ_{0} for $\delta\left(k \cot \eta_{0}\right)=0$, (c) λ_{0} for $A_{0}=0$

Potential		${ }^{3} \mathrm{~S}$ n-p				
		λ_{0}	A_{0}	$r_{0}(\mathrm{fm})$	P_{0}	$P_{0} r_{0}{ }^{3}$
Gaussian	(a)	$1 \cdot 0$	$0 \cdot 5734$	$1 \cdot 7113$	-0.0264	-0.1323
	(b)	1.3624	$0 \cdot 4284$	1.6862	-0.0226	-0.1084
	(c)	1.8122	0	1.7014	-0.0236	-0.1162
Exponential	(a)	1.0	$-0 \cdot 2009$	1.7289	$0 \cdot 0385$	0-1990
	(b), (c)	$0 \cdot 8846$	0	1.7264	0.0387	0-1991
Yukawa	(a)	$1 \cdot 0$	$0 \cdot 4913$	$2 \cdot 4312$	$0 \cdot 0498$	$0 \cdot 7156$
	(b), (c)	$2 \cdot 2471$	0	$2 \cdot 2301$	$0 \cdot 0768$	$0 \cdot 8518$
		${ }^{1} \mathrm{~S} \mathrm{n}-\mathrm{p}$				
Gaussian	(a)	$1 \cdot 0$	$0 \cdot 4317$	$2 \cdot 6349$	-0.0186	-0.3403
	(b)	1-2563	$0 \cdot 4071$	$2 \cdot 6180$	-0.0198	-0.3553
	(c)	$1 \cdot 6933$	0	$2 \cdot 6405$	-0.0190	-0.3501
Exponential	(a)	$1 \cdot 0$	$-0 \cdot 2009$	$2 \cdot 7516$	$0 \cdot 0066$	0.1375
	(b), (c)	$0 \cdot 7733$	0	$2 \cdot 7325$	$0 \cdot 0098$	0-1999
Yukawa	(a)	$1 \cdot 0$	$0 \cdot 2895$	3-1611	$0 \cdot 0380$	$1 \cdot 2003$
	(b), (c)	$1 \cdot 4080$	0	3-1294	$0 \cdot 0405$	1-2412

When a_{0} is given correctly, low energy scattering $\left(k r_{0} \leqslant 1\right)$ is governed almost entirely by the value of r_{0}, via the shape-independent formula (7). The variational procedure (b) implicitly neglects the shape-dependent term $P_{0} r_{0}^{3} k^{4}$, so that only r_{0} can be hoped to be improved by procedure (b), as contrasted with (a). Actually, the only significant improvements in the value of r_{0} occur for the Yukawa potential, where r_{0} has a large error via (a), the change being considerable in the ${ }^{3} \mathrm{~S}$ state. In other cases, the improvement is either very small, or the error in r_{0} is even increased slightly. The reason for the latter occurrence is that Schwinger's variational principle for $k \cot \eta_{l}$ merely makes the latter stationary for small first-order changes $\delta \psi_{l}$ in ψ_{l}, but does not subject it to either an upper or lower bound. More parameters in ψ_{l} do not necessarily improve the second-order accuracy in η_{l} and therefore r_{l}, as the variational principle holds only to first order.

The result indicates that the distorted wave formula (1) for $\tan \eta_{l}$ already makes $k \cot \eta_{l}$ stationary correct to first order. Values obtained for the shape parameter P_{0} and for $P_{0} r_{0}^{3}$ are also quite good, so that phases η_{l} at higher energies are correctly described.

Case (c) in Table 3 gives the best results for r_{0} obtained, although only for the Gaussian potential are they different from (b). We conclude that the one-parameter form factor (4) has the advantage of both simplicity and accuracy, the latter being equivalent to first order to that attained by a variational calculation with two parameters in $g_{l}(r)$. Any differences are second order, but for simplicity, (4) with a variable λ_{l} is preferable.

VI. References

Blatt, J. M., and Jackson, J. D. (1949).-Phys. Rev. 76: 18.
Chew, G. F., and Goldberger, M. L. (1949).-Phys. Rev. 75 : 1637.
Hughes, D. J., Burgy, M. T., and Ringo, G. R. (1950).-Phys. Rev. 77: 291.
Mather, K. B., and Swan, P. (1958).-"Nuclear Scattering." p. 208. (Cambridge Univ. Press.)
Ringo, G. R., Burgy, M. T., and Hughes, D. J. (1951).-Phys. Rev. 84 : 1160.
Salpeter, E. E. (1951).—Phys. Rev. 82: 60.
Schiff, L. I. (1949).-"Quantum Mechanics." (McGraw-Hill: New York.)
Swan, P. (1960a).-Nature 187: 585.
Swan, P. (1960b).-Nuclear Phys. 18: 245.
Swan, P. (1960c).-Nuclear Phys. 21: 233.
Swan, P. (1961).—Nuclear Phys. 27: 620.
Swan, P. (1963).-Nuclear Phys. 42: 134.

[^0]: * School of Physics, University of Melbourne.

