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Summary 

A linear chain model of a close-packed line of atoms in a solid has been 
constructed. The model differs from usual linear chain models in that the chain 
is not strictly one-dimensional, the individual atoms being free to move in three 
dimensions. To account for the interaction of the chain with its surroundings an 
effective potential has been introduced. When the thermal expansion of solid 
argon is calculated, satisfactory agreement with experiment is obtained in the 
classical region. 

I. INTRODUCTION 

The influence of the anharmonic terms of the interatomic potential on the 
specific heat, compressibility, and thermal expansion of atomic solids has been 
studied by several authors using a linear chain model. If the model is of any validity, 
then the results derived should apply well to solid argon for which the interatomic 
potential is accurately known. 

Damkohler (1935) evaluated the constant-volume partition function numeri­
cally, while Dugdale and MacDonald (1954) and MacDonald and Roy (1955) have 
evaluated the constant-pressure partition function analytically. Later Leibfried 
(1955) evaluated the constant-volume partition function analytically. However, 
when the thermal expansion of solid argon is evaluated on the linear chain model 
with the known interparticle potential (see Dobbs and Jones 1957, p. 553) the result 
does not agree well with experiment. More recently, linear chains have only been 
used as mathematical abstractions on which to illustrate the appropriate method 
for a three-dimensional model. 

The purpose of this paper is to show that the linear chain will give reasonable 
results if two modifications are made to make the model more realistic. The first 
modification to be made is that the chain of atoms is allowed to relax sideways, 
i.e. it is situated in three dimensions. The chain will then correspond more closely 
to a close-packed line of atoms in a solid. 

In order to represent the effect of the rest of the solid, inasmuch as it con­
strains the chain of atoms to an almost linear form, harmonic binding forces have been 
postulated. These forces act between the atom and the equilibrium line. With 
the introduction of these additional forces the classical partition function cannot 
be separated into a product of single integrals. The evaluation of the partition 
function can, however, be reduced to the solution of an eigenvalue problem, as 
has been discussed by Barker (1962). While strictly one-dimensional anharmonic 
chains have been discussed quantum mechanically by Leibfried and Ludwig (1961) 
and Maradudin, Flinn, and Coldwell-Horsfall (1961), the treatment here is classical. 
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The second modification is to use an effective potential between members of the 
chain instead of the interatomic potential between two free atoms. The effective 
potential is used to take account of the fact that the close-packed line of atoms is 
in the centre of a solid and hence interacts with its surroundings. 

The effective potential in the chain is constructed from the interatomic 
potential of two free atoms by summation over lattice sites. The energy of an atom 
in the close-packed line due to half the solid has been taken as the effective potential 
in the chain. This method of constructing an effective potential has been suggested 
for an Einstein model by Foreman (1962), but it is more logical to use such a con­
struction to obtain an interparticle potential in a chain rather than the potential 
in which an atom moves. 

Fig. I.-Diagram of notation for a displacement of the chain. 

The result of the model is applied to the calculation of the expansion of the 
close-packed line of atoms for argon. The interatomic force is known for argon 
and accurate measurements of the thermal expansion have been made (cf. Dobbs 
and Jones 1957). Since the model has been constructed with a view to giving correct 
properties in the direction of the chain, it may be accurate for thermal expansion 
and compressibility but cannot be expected to give such non-directional properties 
as the anharmonic correction to the specific heat. 

II. THE MODEL 

The model chosen is that of a chain of atoms in three dimensions with nearest­
neighbour interaction. This chain of atoms represents a close-packed line inside 
a solid. To simulate the constraining effect of the rest of the solid the chain is 
harmonically bound to a straight line. Figure 1 shows a diagram of the model. 

It is assumed that an effective potential @(r) has a single minimum at r = a. 
For convenience the zero of energy is taken so that @(a) = O. The potential will 
later be expanded about r = a and we let 

... ]. (1) 
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Here the ({>n are dimensionless and are given by 

(2) 

and 
d2 ({>1 B--I - dr2 r=a 

(3) 

is the harmonic constant of the potential. 

Letting (Xm Y n' Zn) denote the positions of the nth atom in the chain, where 
Xn is measured parallel to the line and Y m Zn perpendicular to the line, then the 
total configuration energy of the chain is 

U = L {lB!Y~+lB!z~+({>(rn.n+1)}' 
n Xl X2 

(4) 

where 
(5) 

The harmonic terms which bind the atoms to the line are taken, for generality, as 
different in the Y and Z directions. The quantities Xl and X2 are two dimensionless 
parameters representing the ratio of the strength of the harmonic part of the inter­
particle potential to the strength of the sideways harmonic binding. 

III. THE PARTITION FUNCTION 

In order to evaluate the thermodynamio properties of the model a constant­
force partition function has been studied. The olassical constant-force partition func­
tion is defined by 

e-G1kT = h.-sI d"p I dBq exp-k~{ .Jt"(P,q)+FL}, 

where G is the Gibbs energy, 
.Jt"(p, q) is the Hamiltonian, 

F is the applied force, 
L is the length of the chain. 

For the model we are studying the Hamiltonian is given by 

.Jt" = L 2~ p~+U, 
(n) m 

where m is the mass of an atom in the chain and U is given by equation (4). 

The length of the chain is 

L=XN-Xo, 

where N is the number of atoms in the chain. 

(6) 

(7) 

(8) 

The partition function cannot be separated into the product of a set of integrals 
as was done by Dugdale and MacDonald (1954); however, the evaluation of the 
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partition function can be reduced to the problem of finding the largest eigenvalue 
of a matrix. The reduction of a partition function to an eigenvalue problem was 
used by Kramers and Wannier (1941) in discussion of the Ising model of ferro­
magnetism. More recently, Longuet-Higgins (1958) has reduced the partition 
function of a multicomponent one-dimensional fluid to an eigenvalue problem, 
and Barker (1962) has given a comprehensive discussion of the method. For the 
purpose of this paper we need only note that if the partition function can be 
written as 

then 

Z = KN J dNq ~ M(qi; qi+1), 

Z = KNTrace{MN} 

= KNAN 

(9) 

(10) 

in the limit of large N. Here MN is the Nth matrix power of M and A is the largest 
eigenvalue of M, i.e. A satisfies 

X'P(qi) = fM(qi,qi+I)lf'(qi+l)dqi+l' (ll) 

The partition function (6) can be written in the form (9) by the identification 

{J(m 3(kT)6 )} -Fa/kT 
K = fi6 B3 Xl X2 e , (12) 

M = J C27T~:IXJeFa/lcTJ exp-k~{ tB X~(Y~+n+l)+tB~;(Z1+Z;+1)+@(ri.i+1) 

and 

qi = (Yi , Zi), 

qi+1 = (Yi+l' Zi+l)' 

+F(Xi+1-X i) }d(Xi+1-Xi), (13) 

Here the integral over the momentum coordinates has been taken and the factor K 
has been separated, as it is the purely harmonic contribution to the partition function. 

In order to expand the anharmonic correction to the partition function in 
powers of the temperature and the force, the variables X, Y, Z are changed to 

Xn = y'(BJkT).(Xn+1-X n-a), } 

Yn = y'(BJXlkT) Y n' 

Zn = y'(BJX2kT)Zm 

(14) 

after which the matrix (13) is expanded in powers of the temperature and the force. 
It is convenient at this stage to reduce all quantities to dimensionless quantities 

Ng = GJBa2, .} 
t = kTJBa2, 

j= FJBa. 

(15) 
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The matrix (13) then becomes 

= {1/v'(21r)}exp-[!(Y~+Y;+1)+Hz~+Z;+l)] Jexp-[fP/kT+fx]dx. (16) 

In terms of the reduced variables (15), the potential can be expanded in 
powers of the temperature as 

fP/kT = lx2+ ~ kr.x'"RStf{S-tf"-2) , (17) 
r.8 

where 

and 

kso = ifPs, k12 = i, } k,o = -,i-.;fP" kss = ifPs-i, ko, = t, 

k50 = "d"!) fPs' kS2 = l"2 fP,-ifPs+i, ki' = lfPa-i· 

(18) 

Using (16), (17), and (18), the matrix can be expanded in powers of t and f. 
After the integral over x is taken, the matrix can be expanded in the form 

where 

and 

with 

M=H+V, 

Ko = {-3k,o+J.-jk~o}t+ ... 
+3ksoJ' +{15k5o -105kaok40 +!l.-!.2.k~o}ft + 
+Hs/t+{ --\ll.k,o+!.£.2.k~o}f2+ . 
+ ... , 

Ks = {-k22+3ksoklll}t+ ... 
+ {k12}f +{3ksll-15kaok22 -15kl\lk,o +.!~.2.k~oklll}ft + 
+{ -iksll-tJ.-jkaok12}f+ . 
+ ... , 

K, = {-ko,+ikMt+ ... 
+{k1, - 3kaok04 -3k12k2S+J.2Il.ksokMft + 
+{ -ik04 +!kMf2+ ... 
+ .... 

(19) 

(21) 

The eigenvalue of the matrix can now be found using perturbation theory where 
in equation (19) V is considered as a perturbation to H. 

The eigenfunctions of H can be divided into two classes. The first class is 
that of the eigenfunctions orthogonal to exp-i[Y;+1 +z;+1]. .All such eigenfunctions 
ate degenerate with a zero eigenvalue. If the eigenfunction is, not orthogonal to 
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exp-![y!+1 +z!+1] then substitution shows that there is only one such eigen­
function. The normalized eigenfunction is 

lJ'o(y", z,,) = {I/V(2'IT)}exp-![y~+z~]. (22) 

The eigenvalue of this eigenfunction is one and is then the largest eigenvalue of H. 
The eigenvalue spectrum is then given by 

{
I, 

.\" = 
0, 

n=O, } 

n;f=.O. 
(23) 

The eigenvalue .\ of M can now be expanded in powers of t and f by using 
perturbation theory. Hence 

.\ = .\o+<OIVIO)+ 2:' <OIVI;)_<;'1V10), 
" 0" 

(cf. Landau and Lifschitz 1959, p. 133) when taken to second order. Using the result 
of (23) this takes the very simple form 

.\ = I+<OIVIO)+ l;' <OlVln) <nIVIO) 
" 

(24) 

In this last equation the symbol 0 has been dropped, the eigenfunction involved 
being given by (22), and the X symbol denotes matrix multiplication. As we shall 
require In .\, this is given to the required order by 

In'\ = (V)+<Vx V)_!(V)2. 

On substituting (9) into (12) 

In'\ = Ko+K2<R2)+K,<R4)_!K~-KoK2<R2)-KoK,<R') 

+!K~{2<R2 X R2)-3<R2)2}. 

The terms involving R can be evaluated by integration. 

The Gibbs energy is then given by (4) which may be written as 

g = -t InK-t In.\. 

Substituting, 

g = -t In K-iP 
+UtP, -!T tPi-(Xl +Xs)}t2 

+{ -!tPa-(Xl +Xs)}Jt 

+{ -ltPs+itPstP,-ttPg+( -!tPS-3)(Xl +X2)-t(x~+b1XB+~)}ftll 

+{ttP,-itPi-(Xl +X2)-!(rl+X~}f2t 

+ .... 

(25) 

(26) 

(27) 
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From the Gibbs energy the thermal expansion of the chain is found as 

k 
a = Ba2[{ -tcJiS-(Xl +X2)} 

+{( -t cJi5+!cJiscJi4 -!cJii)+( -cJiS-6)(Xl +X2)-9(xi+hlX2+X~)}t 

+{(t cJi4 -cJi~)-2(Xl +X2)-3(xi+x~)}f 

199 

+ ... J. (28) 

IV. APPLICATION TO SOLID ARGON 

Because of the constraining effect of the surrounding atoms, a close-packed 
line of atoms inside a crystal will act as if its interparticle potential is considerably 
stronger than the potential between two free atoms. Hence it is necessary to calculate 
the effective potential which exists between the members of the chain when it is in 
situ. This effective potential is calculated by summing the free interparticle potential 
over the lattice sites surrounding the chain in an appropriate manner. 

Before calculating the effective interparticle potential of the chain in the 
solid, consider an isolated one-dimensional chain maintained so that all atoms 
are stationary and at their equilibrium positions. Then the potential well that 
anyone atom finds itself in, is not the interparticle potential. It will be seen that 
the potential well is symmetric and equal to the sum of two interparticle potentials 
oppositely directed. The correct way to find the effective potential in the chain 
is to neglect the effect of the atom to one side of the one which is being considered. 

To find the effective potential in the chain representing a close-packed line 
in a solid a similar procedure is used. A schematic diagram of the situation is shown 
in Figure 2. The effective potential on the chain is taken as the potential on one 
atom due to half the solid. In Figure 2 the potential due to atom 4 together with 
half the potential due to atoms 1 and 2 would be counted if only nearest-neighbour 
interactions are considered. 

The harmonic binding energy of the atoms to the line is found by displacing 
an atom perpendicularly to the line and summing the contributions due to the 
atoms surrounding the line. In this case, however, the summation is over all 
nearest neighbours. 

If the interatomic potential between two isolated atoms can be expanded 
about the equilibrium position as 

</>(r) = ba2 [t(r a ar +;,Ys(r-:ar + 1,Y4(r-:a), + .. .]. (29) 

then for the case of a face-centred cubic crystal an easy summation over lattice 
sites gives for the coefficients of equation (1) 

B=2b, 

(30) 
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Similarly the sideways harmonic binding can be evaluated as 

Xl = X2 = t· (31) 

For the face-centred cubic crystal, then, the thermal expansion is given by 
substituting (30) and (31) into equation (28). This gives the result 

a. = b!2[{-ilrY3-!}+{(-2hY5+694Y3Y4-l-J254;1)+(-i-'Y3-].·i'-)}:~+ ... ], (32) 

at zero external force. 

w(r) 

2 

4 

sO 

Fig. 2.-Diagram illustrating the method of finding the effective 
potentiaL 

When this result is applied to argon, using the potential 

,per) = 4E{(a/r)l';l,-(a/r)6}, 

E = 169 X 10-18 erg, 

a= 3·402 A, 
as is given by Dobbs and Jones (1957), the following results are obtained: 

k/ba2 = 1·133 X 10-4 (degK)-I, 
Ya = -21, 
Y4 = 371, 
Y5 = -6440. 

This may be substituted into the equation (32) to give 

a. = [3· 89+0·0297T] xlO-4 (degK)-I. 

} 

(33) 

(34) 
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Argon can only be considered as a classical solid at higher temperatures. The Debye 
temperature of argon is SOoK and evaluating the thermal expansion at this tempera." 
ture gives 

a = 6·27 X 10-4 (degK)-I. 

This may be compared with the measured value (Dobbs and Jones (1957)) of 

a = [6·0±0·3] X 10-4 (degK)-I. 

Analysis of the calculations shows that, of the two modifications introduced, 
that of providing an effective potential plays a much more decisive role in deter­
mining the results for solid argon than the permitted slight non-linearity of the 
chain. This is not unexpected when one considers that a sideways displacement 
which is small to first order produces only a second-order change in the length of 
the chain. Thus, for the permitted non-linearity to be significant, large sideways 
displacements must occur which would require large values of (Xl +X2) of equation (2S). 
In fact, since «>3 is always negative, (2S) shows that negative thermal expansion 
would be obtained at sufficiently low temperatures if 

(35) 

Comparing with (30), (31), and (34), we see that such an effect could be anticipated 
only for extremely anisotropic solids, i.e. close-packed linear chains which are far 
from their neighbours in at least one of the Y and Z direotions. Such an effect 
has been observed in anisotropic metals (of. Childs 1953, p. 665), but we consider 
application of the linear chain results would not, in this case, be of any quantitative 
significance. 

Turning now to the question of the compressibility, two diffioulties arise, 
the first of whioh is of a general nature. Sinoe the interatomio potential is determined 
partly from compressibility data, a oertain oircularity of argument arises if the 
potential (33) is used to predict compressibility. It oan, however, be argued that the 
calculation should be made since it provides a test of the self-consistency of the 
method used in this paper. 

The second diffioulty is then encountered, which is that of relating the applied 
force on the solid to the foroe in the ohain, which latter is determined from an 
effeotive potential whose "cross section of influen{'e" may not always be very clear. 
For the special case of a face-centred cubic crystal with purely harmonic inter­
actions between stationary atoms, the calculation is easily made to give for the 
isothermal compressibility 

KT = _~(aL) 
L ap T 

a2g a 
= -3a!2 2v'2.b' (36) 

where a is the separation between nearest neighbours, and b is the strength of the 
harmonic interaction. (The factor 3 is to convert to volumetric compressibility.) 
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Assuming that (36) holds in the anharmonic case also, and using (27), (30), 
and (34) in (36) we have 

KT = 0·486{1 +0·00768T} X 10-10 cm2dyne-1, 

giving the result KT = 0·784 X 10-10 cm2dyne-1 at 800 K compared with the experi­
mental value of KT = 0·781 X 10-10 cm2dyne-1 • The consistency check is thus 
satisfactory in the classical region. 
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