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Summary 

The correction of Vaughan-Williams and Haas to Marshall's >" set of thermal 
conductivities for a fully ionized hydrogen isotope in the presence of a magnetic 
field is extended to the>. and 18 (or K) sets, and the high-field limits for the 
components perpendicular to the magnetic field are included. 

The results of Kihara, Midzuno, and Kaneko for the rate of entropy produc
tion due to irreversible processes in an anisotropic plasma are then used to obtain 
the Onsager expressions for the reduced heat flow and the electric field respectively, 
when the magnetic field is zero. From these Onsager expressions Spitzer's expres
sions for the absolute heat flow and conduction current density are obtained, with 
attendant derivation of relations between the scalar transport coefficients referred 
to earlier by Spitzer, Kaneko, and Seymour. 

Comparison of results obtained by Kaneko, Marshall, and Landshoff for 
the 2nd approximation to the scalar electrical, thermal, and thermoelectric transport 
coefficients of an isotropic deuterium plasma shows close agreement. The corres· 
ponding results of Spitzer and Harm in infinite approximation are also included 
for purpose of comparison. 

Finally, the influence of Marshall's corrected thermal conductivities on 
the radial heat flow approximation in Seymour's earlier analyses of a radially con
stricted deuterium plasma between electrodes is considered, and it is shown that 
the original basic approximation of perfect thermal insulation at the free boundary 
surface of the plasma can still be made more plausible in the limit of a strong external 
guiding magnetic field, provided that this magnetic field corresponds to the more 
stringent inequality w'7'>1400 (w the electron gyrofrequency, 7 the electron 
collision time) for highly ionized deuterium, rather than the inequality w7>1 which 
appeared in the earlier analyses. 

I. INTRODUCTION 

During 1961 the author published papers on the estimation of the maximum 
temperature in a radially constricted deuterium discharge between electrodes 
(Seymour 1961a), the influence of thermoelectric effects on the maximum tempera
ture in such a discharge (Seymour 1961b), and the stability of this particular dis. 
charge configuration (Seymour 1961c). Since a region of ionized gas is made 
anisotropic by the presence of a magnetic field, it was convenient in the first of these 
papers to choose as basic equations for the constricted discharge analysis the forms 
given in Marshall's detailed report (1957) for the current density vector, j, and 
the heat flux vector, q, in a fully ionized gas having atomic number, Z = 1. The 
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expression for j contains the components aI, all, and alII of the electrical conduc
tivity tensor, and the components <pI, cpIl, and <pIlI of the thermal diffusion tensor. 
Likewise, the expression for q contains the components KI, KII, and KIll of the 
thermal conductivity tensor when electric currents are flowing ((JI, (JIl, and (JIll in 
Marshall's notation) and the components gI, gIl, and gm of the tensor accounting 
for the contribution to the heat flux from the electric field E. Marshall's a, <p, K, 
and g transport coefficients are given for an actual gas in terms of a collision time 
for electrons, T, which varies as T3/2, where T is the temperature. To obtain the 
values of these transport coefficients, Marshall adopts a successive approximation 
technique, which he limits to the second approximation because he considers this 
sufficient. 

For an ionized gas not in the presence of a magnetic field Spitzer and Harm 
(1953) obtain the isotropic forms of j and q in terms of the scalar transport coeffi
cients a, K, u, and {3, where u and {3 are the thermoelectric coefficients. Each of 
these coefficients for an actual ionized gas is given as the product of the corresponding 
coefficient for a Lorentz gas and an appropriate correcting transport coefficient. 
For the transport coefficients along the magnetic field H, Spitzer and Harm's results 
for Z = 1 are equivalent to Marshall's procedure taken to infinite approximation. 

When H is reduced to zero in Marshall's work, the 3 X 3 matrices corres
ponding to the tensor transport coefficients reduce to diagonal form, with equal 
elements on the diagonal. In this isotropic form, this author compared Marshall's 
results with those of Spitzer and Harm, to obtain the following results: 

KM/Ks,H = 0·939, aM/aS,H = 0'979, 
g/{3 = -1'01, <p/u= 1·12. } (1.1) 

In view of this close correspondence, and the particular form of Spitzer and 
Harm's transport coefficients, they were adopted in the author's earlier papers (Sey
mour 1961a, 1961b, and 1961c), where it transpired that significant results, such 
as the expression for the maximum temperature in the discharge and that for the 
voltage between the electrodes, depended upon the scalar, and not the tensor, form 
of the transport coefficients. 

Since publication of the constricted discharge papers, the author's attention 
was, in October 1961, directed by W. B. Thompson* to a note by Vaughan-Williams 
and Haas (1961) on an error in the thermal conductivities. Recalling that Marshall 
(1957, pp. 42, 43) introduces three sets of thermal conductivity coefficients, namely, 
,V, ,VI, and AlII, the thermal conductivity coefficients; ,\'1, ,\'Il, and ,\'IlI, the "true" 
thermal conductivity coefficients if thermal diffusion effects were absent; and KI, 
KII, and KIII, already mentioned, it is to be noted that Vaughan-Williams and 
Haas give corrected forms of ,\'II and ,\'III, ,\'1 being obtained as the low-field limit 
of ,\'Il. 

In this paper we further present the corrected forms of KI, KIl, and KIII; 
and for completeness the corrected forms of AI, All, and ,VII, obtained by a relatively 
quick method. Appropriate high-field limits are also given. While, for reasons 
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given above, the correction of KI along the magnetic field will not affect the numerical 
values of the significant results derived in the author's earlier papers, the correction 
of KII and KIII does make it necessary to review the simplifying assumptions which 
led to neglect of radial heat flow in these earlier analyses. Prior to this review in 
Section VI, some results obtained from consideration of the thermodynamics of 
irreversible processes in a plasma are employed to derive a useful relation between 
a, {3, and a, given by Spitzer (1956), and also an inequality involving these three 
transport coefficients and K. 

II. THE CORRECTED THERMAL CONDUCTIVITY COEFFICIENTS 

In their paper Vaughan-Williams and Haas mention that Marshall's last 
collision integral was found to be in error (Marshall 1957, p. 81), and that their 
correction left Marshall's parameters a~ and at unchanged, but that a~ (Marshall 
1957, p. 42) was varied from its original form. As a consequence, Vaughan-vVilliams 
and Haas give corrected forms of A'II and ,\'III as shown in Table 1, where n is the 
plasma total number density, k is Boltzmann's constant, m1 is the mass of the 
electron, m 2 is the ion mass, Ml Rim1/m2 , w is the electron gyrofrequency, and T 
and T have already been defined in Section 1. We also give in Table 1 the low-field 
limit ,\'1, gained from ,\'1I when wT~l. It remains to obtain expressions for the 
A and K sets; the a, </>, and g sets are left unaltered by the change in a~. 

From Marshall (1957, p. 29) we simplify equations (3.87) by taking 
(m2 -m1 )/(m2+m1 ),-...,I, since m2';?>m1 , whence use of the corrected,\' set of Table 1 
and the </> set (Marshall 1957, p. 42) readily yields the corrected KI, KII, and KIll, 
as shown in Table l. 

In an attempt to obtain the A set from equations (3.80), (3.81), and (3.82) 
of Marshall's report (1957, p. 28), one encounters extremely tedious algebra. The 
author discovered that it was simpler to use the results (3.4) derived earlier (Seymour 
1961a, p. 132). Using the corrected K set, together with the </> set and the transport 
coefficients, lP, ifP, and ifiIII, giving the heat flux due to electric currents, equations 
(3.4) yield AI, All, and AIII. Like the </> set, the ifi set (Marshall 1957, p. 44) is not 
affected by the change in a~. Table 1 is completed by inclusion of the corrected A set. 

III. Low AND HIGH-FIELD LIMITS OF THE THERMAL 

CONDUCTIVITY COEFFICIENTS 

In Table 1, ,\'1 was obtained indirectly as the low-field limit (wT~I) of ,\'1I, 

whereas KI and AI were obtained directly from expressions derived by Marshall 
and Seymour respectively. Consistently, the low-field limits of KII and All agree 
with the KI and AI results obtained in the direct manner mentioned above. 

As will be understood from Seymour (1961a, pp. 135-6) the high-field limits 
of the a and K sets for conditions of extreme anisotropy are of importance, and 
so in the high-field limit 

W 2T2';?>3 '394M11j 2+0 '32M11+9, (3.1) 

the new values of ,\'1I, A'III, All, AlII, KII, and KIll are given in Table 2. From 
Tables 1 and 2 it will be seen that the AI, All, and AlII given by Thompson (1961) 
require revision. 
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IV. RELATIONS BETWEEN THE TRANSPORT COEFFICIENTS 

The steady non-equilibrium state to be found in an ionized gas when eleotrio 
ourrent and heat flows are present can be analysed by application of the prinoiples 
of the thermodynamios of irreversible processes. These principles stem from a 
theorem due to Onsager (1931), and essentially permit choice of the so-called proper 
"forces" which give rise to the "fluxes" in the irreversible processes. (Callen 1948, 

TABLE 1 
OOMPONENTS OF THE THERMAL OONDUOTIVITY TENSORS 

'II 5 nksTT {1'866"hB+O'966 3Ml +O'566M~/1 } 
A = "{ ~ w'r'+6'282w2T1+O'933 + (WST2+9)Ml +3.394M~/I+O'32 

,\'III _ 5 nk2TT f -wT(wSTS +l·9) WTMl} 
-"{ m l l w'T'+6·282w2T2+O·933 + (w2T'+9)Ml+3'394M~/2+0'32 

II 5nk1TT{ 1·866 3Ml+O'566M~/1 1 
A ="{ ~ W2T2+3'48 + (W2T'+9)Ml+3'394M~/B+O'32f 

1961; De Groot 1951; Bosworth 1956; Landau and Lifshitz 1960). In De Groot's 
notation, with Xi (i = 1, 2, ... , n) as the forces and J i (i = 1, 2, ... , n) as 
the fluxes, Onsager's linear relations for small departures from system equilibrium 
are 

(4.1) 

where the phenomenological ooeffioients LiTo (i,lc = 1, 2, , n) give, for example, 
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the electrical and thermal conductivities when i = k, and the kinetic coefficients 
coupling the various flows when i -=1= k. Onsager's reciprocity theorem then advances 
that for properly chosen Xi and J i 

for H = 0, (4.2) 

where i, k = 1,2, ... ,n. 

TABLE 2 
COMPONENTS IN THE HIGH-FIELD LIMIT w2T2~3·394M~I/2+0·32M-;-I+9 

KIll ~ 0 

The selection of the proper forces and fluxes can be readily made by means 
of the expression for the rate of entropy production. For a plasma close to thermal 
equilibrium the rate of entropy production due to irreversible processes has been 
obtained by Kihara (1959) and Kihara, Midzuno, and Kaneko (1960) as 

where 

(as) -T at. = -Q·gradln T+ 2:njV,.{F j -(gradfLj)T}, 
1ft J 

F j = ej (E+~voXH)+mj{g-(~+Vo·grad)Vo}, 
(grad fLj)T = grad fLj+sjT grad In T, 

T is temperature, 

S is the entropy per unit volume of the plasma, 

Sj is the entropy per particle, 

t is time, 

Q is the reduced heat flux vector, 

nj is the number density of the jth component, 

mjnj is the mass density of the jth component, 
ejnj is the charge density of the jth component, 

Vj is the flow velocity of the jth component, 

(4.3) 
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Vo = ~ nimiV;j~ mini is the mean mass velocity, 
j j 

Vi = vi-vO is the mean peculiar velocity ofthejth component, 

ILi is the chemical potential per particle, 

g is the gravitational acceleration, 

E is the electric field. 

In cases where we can neglect gravitation and inertia, and mutual diffusion 
we have respectively 

and 

Then, for H = 0, the result (4.3) assumes the simple form 

T(~~) = -Q·grad In T+j 'E, 
irr 

where j = ~ nieiV; is the conduction current density. 
j 

(4.4) 

(4.5) 

From (4.5) the proper forces are identified as-grad In T and E, while the fluxes 
are j and Q. In mixed form, the linear relations between these quantities may be 
written as 

and 
Q = -T A grad In T+A12j, 

E = -A21 grad In T+jja, } 
where the Onsager reciprocity is now expressed (Casimir 1945) as 

A12 = -A21 = p say, 

(4.6) 

(4.7) 

and A and a correspond respectively to Marshall's AI and a I. Finally we have 

and 
Q = -T A grad In T+pj, 

E = p grad In T +jja. 

Inserting the results (4.8) into (4.5) we obtain 

T(~~). = T A(grad In T)2+j2ja. 
lrr 

} (4.8) 

(4.9) 

For an irreversible process (asjathrr>O, and since T>O, it follows that the 
quadratic form in (4.9) is positive definite, so that 

a>O. (4.10) 

In terms of the particle velocity Vi of the jth component and the mean velocity 

- I '" -v = n~nivi' 
J 

withn = 2n;, 
j 

(4.U) 
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relative to which there is no flux of particles, the reduced heat flux vector due to 

conduction alone is expressed as 

(4.12) 

Enskog's analysis (Chapman and Cowling 1952) shows that (4.12) can be 

readily converted to the form 

(4.13) 

where 

(4.14) 

In (4.14) the thermal flow and thermal energy are referred to the mean mass 

velocity Yo' relative to which there is a flux of particles ~ njVj. Hence (4.13) shows 
J 

that the heat flux vector q is the sum of the reduced heat flux vector Q and a heat 

flux vector consisting of a flux of particles ~ njVj, each particle of which possesses 
J 

enthalpy of 5kTj2. 

It is of interest to introduce a further heat flux vector, 

(4.15) 

Here the thermal flow and thermal energy are referred to a fixed coordinate 

frame, relative to which there is a flux of particles ~ njV;. By an analysis similar 
J 

to that of Enskog, and use of (4.13), we convert (4.15) to the form 

(4.16) 

with neglect of a small quadratic term tV5vo ~ njmj. Since Vj+vo =~, we see from 
J 

(4.16) that the heat flux vector qo is the sum of Q and a heat flux vector consisting 

of a particle flux ~ njvj, each particle of which possess enthalpy of 5kTj2. For 
J 

plasmas at rest, or for plasmas having a sufficiently small mean mass velocity v 0: 

we shall neglect the convection term 5kTnvoj2 in (4.16), so that qo = q. 

It is to be noted that (4.16) is in agreement with Kihara's (1959, p. 130) 

definition of the reduced heat flux vector, if his enthalpy hj = fLj+sjT is set equal 

to 5kT j2, and his absolute heat flux vector q* is identified as our qo. 

By simple manipulation it is possible to write (4.13) as 

(4.17) 

With m2':;PmV e1 = -e, e2 = e, (4.17) simplifies to 

(4.18) 
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which is in agreement with Kaneko's (1960) result for a plasma at rest. 

where 

From (4.8) and (4.18) we readily obtain 

q = -K grad T-f3E, 
j = a grad T+aE, 

a = -ap/T, 

5kT 
(3 = aT+Tea, 

K = A+a{3/a. 

} 
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(4.19) 

(4.20) 

(4.21) 

(4.22) 

The equations (4.19) are in the form given by Spitzer (1956, p. 87), who also 
quotes the relationship (4.21). The result (4.22) for K is in agreement with earlier 
results obtained by Seymour (1961a, p. 132). In view of the inequalities of (4.10), 
(4.22) yields the interesting result 

Ka-a{3>O. (4.23) 

V. COMPARISON OF RESULTS FOR ZERO MAGNETIC FIELD 

Using the Chapman-Enskog method up to the 6th approximation, Kaneko 
(1960, pp. 1685-96) has calculated the electrical and thermal conductivities and 
the coefficient of thermal diffusion of a plasma in a magnetic field. Similarly, 
Landshoff (1949, 1951) has carried out calculations for the 3rd approximation 
with H finite, and up to the 5th approximation for H = O. 

Restricting attention to zero magnetic field at this stage, in effect Kaneko gives 
a, a, and Marshall's A', where A' is given by Kaneko's equation (34), which applies 
to the equation for Q immediately preceding his equation (25). Unfortunately, 
Kaneko uses the same symbol for this thermal conductivity and for the thermal 
conductivity appearing in the first of his equations (20), where, in fact, Marshall's 
A should appear, as can be seen from the first of our equations (4.8). 

From our equations (4.8), and equation (4.20) it is readily found that 

A = 25{bI(-1)+ (ml)1!2 b1(1) __ 1_(b1(0))2}nk2T7' 
8 m 2 e1(O) m1 ' 

(5.1) 

since 
_ ne27' 1(0) 

a- 2 e , m1 
(5.2) 

and 

(5.3) 

as given by Kaneko. Here bI(-l), b1(l), b1(O), and e1(O) are the parameters given by 
Kaneko in 2nd through to 6th approximation, for atomic number Z = 1 and W7' = O. 

To express K in terms of Kaneko's parameters we use (4.21), (4.22), (5.1), 
(5.2), and (5.3) to obtain 

(5.4) 
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From (4.21), (5.2), and (5.3) we have 

(5.5) 

Using Kaneko's equation (31) for the electron collision time (which is in close 
agreement with Marshall's result for T), Spitzer and Harm's (1953) equations (33), 
(34), and (36) can be written in the form of our equations (5.2), (5.3), (5.4) (with 
omission of the term (Tnt/m2)1/2bl(1», to yield the results 

bI(O) = -(32/57T)YT' 
bI(-I) = (256/157T)ST+bI (O), 

eI(O) = (32/37T)YE' 
} (5.6) 

in infinite approximation. Spitzer and Harm (1953) give values of YT' ST' YE in their 
Table III for various Z-values, together with IlE = i(5YE+3YT)' For Z = 1 we have 
from (5.6) 

bI(O) = -0'5555, 

bI(-I) = 0'6679, 

eI(O) = 1'9747, 
} (5.7) 

in agreement with the figures for infinite approximation appearing in Kaneko's 
tables. 

Using Kaneko's tables for bI (-1), bIll), bI(O), and eI(O) in 2nd approximation 
(H = 0, Z = 1), and equations (5.2), (5.3), (5.4), and (5.5) for deuterium (with 
(ml /m2)t ~ 1/61), we compare Kaneko's numerical coefficients for CT, a, K, and f3 
with those of Marshall and LandshofI in the same approximation, and with those 
of Spitzer and Harm in infinite approximation, as in Table 3, where A, B, 0, Dare 
defined by the equations 

ne2T 
a=B nkeT , } CT=A-, 

m l m l 
(5.8) 

K = Onk2TT, f3 = D nkeTT. 
m l m l 

Table 3 shows very satisfactory agreement between the results of Kaneko, 
of Marshall, and of LandshofI in 2nd approximation. 

"''hile the inequality (4.23) is easily satisfied in 2nd and higher approxima
tions, the quantity 4KoCTo-(ao+f3o)2 = p., say, which appeared in Seymour's analysis 
(1961b, p. 283) is negative in 2nd approximation, but positive in all higher approxi
mations (cf. LandshofI 1951; Spitzer and Harm 1953). It is of interest to note 
that in 2nd approximation p.<0 leads to hyperbolic forms for V and T given 
respectively by (3.2.20) and (3.2.21) of Seymour (1961b), but in fact the trigono
metrical forms of (3.2.20) and (3.2.21), which were obtained by use of Spitzer 
and Harm's infinite approximations to CT, a, K, and f3, are the valid results. 
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VI. INFLUENOE OF MARSHALL'S CORREOTED KII, KIll ON 

THE RADIAL HEAT FLow APPROXIMATION 

225 

In Seymour's earlier papers (1961a, 1961b, 1961c) the analyses were made 
possible by introduction of the basic simplifying assumption that perfect thermal 
insulation exists at the plasma boundary surface when it is pinched away from 
the walls of the discharge table during the containment period, an insulation con
dition which cannot be realized in practice. However, this assumption became 
more plausible in the limit of a strong external guiding magnetic field, because the 
original form of Marshall's KII and KIll showed that for wT~I, the heat flow across 
the radially constricted gas discharge could be neglected compared to the heat 
flow along the discharge. 

From Table 2 we see that in the high-field limit (now a more stringent inequality 
which approximates to w2T2~1400 for deuterium), 

TABLE 3 
RESULTS FOR NUMERICAL COEFFICIENTS A, B, 0, D, DEFINED BY 

EQUATIONS (5·8) 

Authors A B 0 D 

Kaneko 0·966 0·777 3·272 3·192 
Marshall 0·966 0·777 3·270 3·191 
Landshoff 0·966 0·777 3'236* 3 ·192 
Spitzer and Harm 0·987 0·6944 3'823* 3·163 

* These results exclude the correction term (25/8)(m,/m2)'i2bI(1), 
which for deuterium amounts to 0·036 in 2nd approximation and 
closely 0·046 in infinite approximation. 

5nk2TT(0.566M-l/2) K II "'" 1 ""'-4-- 22 ' m1 W T 

where we recall that wand T apply to the electrons. 

For the ions we have 

and 

w+ = -MIW, 
and so (6. 1) can be written 

KII".., 5nk2TT+(0.566) 
,..., 4 22· 

m2 W+T + 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Noting from Table 2 that for w2T2~1400, KIll R::j 0, it is found from (6.1) that 
KII, which now arises mainly from ion-ion collisions (see Vaughan-Williams and 
Haas 1961, p. 165), is nearly an order of magnitude greater than Marshall's original 
result for KII, here considered for w2T2~1400 to facilitate comparison. Hence the 
heat flow across the discharge will be correspondingly enhanced. We can estimate 
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the importance of this effect on the earlier radially constricted deuterium discharge 
analyses as follows. From (4·26) (Seymour 1961a) we have, for wT~1, 

KII ""-' KI 1·369 
"'" W 2T2 ' (6.5) 

KIll R:! 0, (6.6) 

for Marshall's original K's perpendicular to a magnetic field. It follows immedi
ately from (6.5) and (6.6) that our original approximation of neglect of heat flow 
across H compared to that along H for comparable temperature gradients was 
reasonable in the high-field limit WT~l. 

Using the corrected Marshall KI given III Table 1 and (6.1), we have for 
deuterium, with w2T2;'}>1400, 

(6.7) 

where the corrected KI is about 90% of the original KI, and as mentioned above, 

KIll R:! O. (6.8) 

Thus we see from (6.7) and (6.8) that it is still possible to neglect heat flow across 
H compared to that along H in the more stringent high-field limit w2T2~1400. We 
therefore conclude that the basic approximation of perfect thermal insulation at 
the free boundary surface of the plasma can still be made more plausible in the limit 
of a strong external guiding magnetic field, provided that this magnetic field now 
corresponds to the more stringent inequality w2T2~ 1400 for a highly ionized 
deuterium discharge, rather than the inequality wT~1 which gave the high-field limit 
in the case of Marshall's original results for the perpendicular components of the 
thermal conductivity tensors. 
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