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Summary 

The use of the three-circle goniometer for X-ray or neutron crystallography 
is described briefly. Equations are derived using vectorial methods for the computa
tion of the angle settings of the instrument for three-dimensional data collection. 
These equations are derived for both procedures used in practice, namely, where 
the (h k 1) vector in reciprocal space is brought into coincidence with the scattering 
vector or when each zone a..-,;:is [u v w] is brought into coincidence with the axis of 
rotation of the diffractometer. 

I. INTRODUCTION 

The three-circle goniometer is a mechanical device with which a rigid body 
can be given three rotational degrees of freedom. Three rotations are sufficient in 
general to give any vector referred to axes in the body any arbitrary orientation in 
space. Its use for crystallographic work was first developed by Furnas and Harker, 
who fitted it to the standard General Electric X-ray powder diffractometer in order 
to collect three-dimensional X-ray diffraction data from single crystals while restrict
ing the incident beam and the counter to the equatorial plane. Since then Willis 
(1961a, 1962) and others have used it for neutron diffraction work, since ofthe methods 
available for 3-dimensional data collection, the physical dimensions of the neutron 
diffractometer make the equatorial plane method the most attractive. 

There are two different procedures by which crystallographic data can be 
systematically recorded. In the first method each (h k l) vector in the reciprocal 
lattice is systematically brought into coincidence with the scattering vector; in the 
second each zone axis [u v w] is brought into coincidence with the axis of rotation 
of the diffractometer and diffraction data for each reflection in that zone are collected 
by the standard methods used for two-dimensional data collection. 

The method used in practice depends on the type of diffractometer available. 
If a standard X-ray powder diffractometer is used the specimen table usually cannot 
be disconnected from the counter movement so the first method must be used; 
however, in the neutron spectrometers of the type in use on the reactor HIFAR the 
two movements are independent and, since angle setting is carried out by the reactor 
staff, it is preferable to examine the crystal zone by zone so that only two angles 
have to be altered to set up each reflection. 

In the present paper the instrument is described and the equations required 
for the computation of angular settings of the instrument deduced by vectorial 
methods. A geometrical treatment of the first method for using the three-circle 
goniometer has recently been given by Willis (1961b) . 
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II. DESCRIPTION OF THE THREE-CIRCLE GONIOMETER 

It will be assumed that the incident beam and the counter lie in the horizontal 
plane and that the angular position of the counter can be adjusted at will to satisfy 
the Bragg equation for any (h k 1) plane parallel to the vertical axis. The instrument 
is shown diagramatically in Figure 1. The three circles of the goniometer are the 
O-circle whose axis is along the vertical axis of the diffractometer, the X-circle 
which is carried on the O-circle and whose axis is in the horizontal plane, and the 
cI>-circle which is mounted on the X-circle and whose axis is the polar axis of the 
crystal. The rotations about the axes of these circles are designated w, X, cP respec-

------::::4'~;.~:>_-t------x -AXIS 

ARCS 

CRYSTAL 

..... t-----Q-AXIS 

Fig. I.-Diagram of Ill-, X-, and O-circles (after Willis). 

tively. Usually the crystal is mounted on goniometer arcs carried on the cI> circle, 
the motion of these arcs being two additional, unnecessary degrees of freedom. 

III. THEORY 

(a) Geometrical Relationships 

Suppose that the vector r can be brought into coincidence with the vector 
r' (r' = r) by the single rotation 8. Let the unit vector m be the axis of rotation 
and p and p' be the projections of rand r' onto the plane of rotation. p, p', and 
m form a right-handed system for 8 positive. 
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The projection of r onto the plane of rotation is the vector perpendicular to m 
lying in the r m plane given by 

p = (m X r) X m. 

Similarly, 
p' = (m X r') X m. 

r can be brought to r' if their projections on the axis of rotation are equal, that is, 

m . r = m . r' = q (say). (1) 

Using (1) and the relations 

p . p' = pp' cos (J, 

p X p' . m = mpp' sin (J, 

it follows that 

• (J _ m. r X r' 
sln- 22' (2) 

r -q 

and 
, 2 

r.r -q 
cos(J= 2 2' 

r -q 
(3) 

(b) Transformation of Direct and Reciprocal Lattice Vectors 

To calculate the rotations for a crystal of any symmetry an orthonormal set 
of axes in the crystal is used. Direct and reciprocal lattice quantities are transformed 
into this system. A list of the standard relations between the direct and reciprocal 
lattice is given in the appendix. 

The orthonormal axes are defined by: 

* . a 
1= -

*' a 

* 
j _cxa 

- *' ca 

k=~. 
c 

A general vector in the reciprocal lattice is written 

s = ha*+kb*+lc* 

and a general vector in the direct lattice as 

r = ua+vb+lc. 

With the aid of the relationships between the direct and the reciprocal lattice these 
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vectors can be readily written in terms of the orthonormal axes as 

where 

and 

where 

s = xi+yj+zk, 

x = ha*+kb* cos y*+lc* cos f3*, 

y = kb* sin y*-le* cos ()( sin f3*, 

z = lje, 

r =fi+gj+hk, 

f = uja*, 

g = vb sin ()(-ua sin f3 cos y*, 

h = ua cos f3+vb cos ()(+we. 

IV. CALCULATION OF GONIOMETER ROTATIONS 

(4) 

(5) 

To make the equations less cumbersome it will be assumed that, at w = X = 
1> = 0, which is the initial setting of the instrument, k is in the vertical direction, 
i is along the scattering vector, and the X-axis is at an arbitrary angle E to i. To 
avoid ambiguity in determining the quadrant in which a particular angle lies all 
rotations will be expressed in terms of their sine and cosine. 

(a) First Method 

The vector S is first rotated about k to s" using the <D-circle and then to s' by 
the X-circle. In order that s can be brought to s', s" must satisfy (1) for rotation 
about the <D and X-axes. 

The X-axis is the unit vector 

cos E i+sin E j, 

and therefore 
(cos E i+sin E j) . s" = (cos E i+sin E j) . s' 

and 
s" . k = s. k. 

Also, 
s = s' = s". 

Put 
s" = x"i+y"j+z"k, 

then 
x" cos E+Y" sin E = s cos E, 

z" = z, 
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Hence, 
y"2 sec2 E-28y" tan E+Z2 = 0. 

Therefore 
y" = 8 sin E cos E±COS E ...}(82 sin2 E-Z2). 

y" will be real for 8 sin E ;;:: Z, so the condition that s' can be reached from s is 
s sin E ;;:: z. 

By substitution, 

x" = S cos2 E=fSin E ...}(82 sin2 E-z2), 

y" = 8 sin E cos E±COS E ...}(82 sin2 E-z2), 

z" = z. 

The rotations c/> and X are then given by (2) and (3) as: 

sin c/> = (xy" -yx")J(x2+y2), 

cos c/> = (xx" +yy")J(x2+y2), 

sin X = ZJ8 sin E, 

cos X = =f...}(S2 sin2 E-Z2)JS sin E. 

(6) 

(7) 

(8) 

(9) 

The restrictions on E given by the condition s sin E ;;:: z give rise to the three 
settings discussed by Willis. For E = trr, the scattering vector lies in the X-plane 
and all reflections are accessible; for E = 0, the X-axis lies along the scattering 
vector and only two-dimensional data can be collected. For intermediate values 
of E a restricted number of reflections can be recorded. 

(b) Second Method 

To bring the direct lattice vector r to the vertical position the <l>-circle is used 
to bring r to rtf, and the X-circle to bring rtf to rk. Applying (1) to both rotations: 

Also 

Therefore, 

and hence 

r" . cos E i+sin E j = rk . cos E i+sin E j, 

r". k = r. k. 

r = r' = rtf. 

f" cos E+g" sin E = 0, 

h"=h, 

g" = cos E...}(r2-h2), 

1" = -sin E...}(r2-h2), 

h" = h. 
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g", J", and h" are real for any € and hence all r can reach rk. 

Again the rotations .p and X are obtained from (2) and (3): 

sin.p = (Jg" -gj")/(r2-h2), 

cos.p = (fi" +gg")/(r2-h2), 

sin X = .j(r2-h2)/r, 

cos X = h/r. 

(10) 

(11) 

(12) 

(13) 

Having placed r along the vertical axis one can calculate the rotation needed 
to bring each reflection in the zone r into coincidence with the scattering vector. 
The reflection common to both zones is that corresponding to the vector lying along 
the X-axis after the .p rotation. This vector is 

So = S cos(€-.p)i+sin(€-.p)j, 

and the rotation required to bring it into the position of the scattering vector is 

W= -E. 

The setting of the Q-circle for all reflections s in the zone r is then 

where 
sin wo = {sin(€-.p)(hx-Jz)+cos(€-.p)(gz-hy)}/sr, 

cos wo = {x cos(€-.p)+y sin(€-.p)}/sr. 

V. CONCLUSION 

(14) 

(15) 

(16) 

The settings of the three-circle goniometer for the collection of three
dimensional structure analysis data from a crystal of any symmetry can be found 
from either equations (4) and (6)-(9) or from equations (5) and (10)-(16), depending 
on which method is used. Care should be taken to ensure that the same roots of the 
equations for the components of s" or r" are used in the computation of.p and x. 
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ApPENDIX 

List of Relationships between the Direct and Reciprocal Lattice 

Notation 

a, b, c, lengths of axes of direct cell, 

oc, f3, y, interaxial angles in direct cell, 

a*, b*, c*, lengths of axes of reciprocal cell, 

oc·, f3*, y*, interaxial angles in reciprocal cell, 

V, volume of direct cell, 

V*, volume of reciprocal cell. 

Relationships 

* be sin oc 
a =---=V=-- b* = casinf3 

V ' 
* absiny 

c = -""V"--!-

V = abc-v'(l+2 cos oc cos f3 cos y-cos2 oc-cos2 f3-cos2 y), 

VV* = 1, 

* cos f3 cos y-cos oc 
cOSoc= 'f3' sm sm y 

f3• - cos y cos oc-cos f3 
cos - . . , 

SIn y sm oc 

* COS oc COS f3-cos y 
COS Y = . . f3 SIn oc SIn 

a . a* = b . b* = c . c* = 1, 

a . b* = b . c* = c . a* = a . c* = b . a* = c . b* = O. 




