AN EXACTLY SOLUBLE TWO-BODY PROBLEM WITH NON-CENTRAL FORCES*

By B. Davies $\dagger \dagger$ and L. M. Delves \dagger

[Manuscript received April 11, 1963]

Summary

A class of local potentials is given which includes hard cores and a finite-range central, tensor, and L.S part, and for which the lowest two neutron-proton states ($J=0, \pi=+1$ and $J=1, \pi=+1$) are exactly soluble. A numerical example is given in which the form factor for the potentials is a hard core plus square well.

I. A Class of Exactly Soluble Potentials

There has been some interest recently (Regge 1959; Barut and Calogero 1962; Bethe and Kinoshito 1962; Bhattacharjie and Sudarshan 1962; Nicholson 1962) in the analytic properties of the scattering amplitude for the non-relativistic Schrodinger equation, in the hope that these properties may have some relevance to quantum field theory; and in this connexion there has been continuing interest in soluble two-body systems. We give here a class of potentials for which the $J=0, \pi=+1$ and $J=1$, $\pi=+1$ states of the neutron-proton system are exactly soluble. These potentials may include hard cores; they contain in addition finite range central, tensor, and L.S parts.

The $J=0, \pi=+1$ state is an uncoupled S state, and is immediately soluble for the potentials we consider. The radial equations for the $J=1, \pi=+1$ state are, in the usual notation (Blatt and Weisskopf 1952),

$$
\left.\left.\begin{array}{r}
{\left[\frac{\hbar^{2}}{M} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+E-V_{C}(r)\right] u(r)} \\
=\sqrt{ } 8 \cdot V_{T}(r) w(r), \tag{1}\\
{\left[\frac{\hbar^{2}}{M} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+E-\frac{6 \hbar^{2}}{M r^{2}}-V_{C}(r)+2 V_{T}(r)-3 V_{L S}(r)\right] w(r)}
\end{array}\right)=\sqrt{ } 8 \cdot V_{T}(r) u(r) ., ~\right\}
$$

We consider a potential with the following form in the triplet state

$$
\left.\begin{array}{rl}
V_{C}(r) & =-V_{C} v(r), \\
V_{T}(r) & =-V_{T} v(r), \\
V_{L S}(r) & =+V_{L S} v(r)-2 \hbar^{2} / M r^{2}, \tag{3}
\end{array}\right\}
$$

[^0]In terms of these quantities, equation (1) becomes

$$
\begin{equation*}
\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{M}{\hbar^{2}}\left[E-V_{E}(r)\right]\right\} \phi=0, \tag{4}
\end{equation*}
$$

the solution of which is known if the Schrodinger equation for S states can be solved for the central potential $v(r)$. There are two solutions, corresponding to the two roots β_{1} and β_{2} of (3); these define $u(r)$ and $w(r)$.

Table 1
parameters of the two-body system for the potential of equation (5)

r_{0} (fm)	r_{1} (fm)	V_{C} (MeV)	V_{T} (MeV)	V_{L} (MeV)	P_{D} $(\%)$	Q $\left(10^{-27} \mathrm{~W}^{2}\right)$	$r_{0 S}$ (fm)	$a_{0_{T}}$ (fm)	$r_{0_{T}}$ (fm)
$0 \cdot 4$	$2 \cdot 4$	$24 \cdot 0$	$16 \cdot 5$	$36 \cdot 2$	$3 \cdot 6$	$2 \cdot 1$	$2 \cdot 94$	$5 \cdot 67$	$2 \cdot 12$
0.4	$2 \cdot 6$	$19 \cdot 7$	$14 \cdot 8$	$31 \cdot 8$	$4 \cdot 0$	$2 \cdot 4$	$3 \cdot 16$	$5 \cdot 77$	$2 \cdot 49$
$0 \cdot 4$	$2 \cdot 8$	$16 \cdot 4$	$13 \cdot 4$	$28 \cdot 2$	$4 \cdot 4$	$2 \cdot 74$	$3 \cdot 36$	$5 \cdot 86$	$2 \cdot 25$
$0 \cdot 5$	$2 \cdot 2$	$33 \cdot 5$	$18 \cdot 7$	$38 \cdot 2$	$3 \cdot 4$	$1 \cdot 8$	$2 \cdot 83$	$5 \cdot 61$	$1 \cdot 92$
$0 \cdot 5$	$2 \cdot 4$	$26 \cdot 6$	$16 \cdot 5$	$33 \cdot 3$	$3 \cdot 8$	$2 \cdot 2$	$3 \cdot 05$	$5 \cdot 71$	$2 \cdot 17$
$0 \cdot 5$	$2 \cdot 6$	$21 \cdot 7$	$14 \cdot 8$	$29 \cdot 3$	$4 \cdot 2$	$2 \cdot 5$	$3 \cdot 27$	$5 \cdot 87$	$2 \cdot 54$
$0 \cdot 5$	$2 \cdot 72$	$19 \cdot 3$	$13 \cdot 9$	$27 \cdot 3$	$4 \cdot 5$	$2 \cdot 74$	$3 \cdot 40$	$5 \cdot 86$	$2 \cdot 31$
$0 \cdot 5$	$2 \cdot 8$	$17 \cdot 9$	$13 \cdot 4$	$26 \cdot 1$	$4 \cdot 7$	$2 \cdot 9$	$3 \cdot 49$	$5 \cdot 90$	$2 \cdot 36$
$0 \cdot 6$	$2 \cdot 2$	$37 \cdot 9$	$18 \cdot 9$	$35 \cdot 3$	$3 \cdot 6$	$2 \cdot 0$	$2 \cdot 95$	$5 \cdot 65$	$1 \cdot 98$
$0 \cdot 6$	$2 \cdot 4$	$29 \cdot 8$	$16 \cdot 7$	$30 \cdot 9$	$4 \cdot 1$	$2 \cdot 3$	$3 \cdot 16$	$5 \cdot 75$	$2 \cdot 23$
$0 \cdot 6$	$2 \cdot 6$	$23 \cdot 9$	$15 \cdot 0$	$27 \cdot 2$	$4 \cdot 5$	$2 \cdot 6$	$3 \cdot 39$	$5 \cdot 85$	$2 \cdot 59$
$0 \cdot 6$	$2 \cdot 8$	$19 \cdot 7$	$13 \cdot 4$	$24 \cdot 3$	$4 \cdot 9$	$3 \cdot 0$	$3 \cdot 61$	$5 \cdot 94$	$2 \cdot 36$

II. A Numerical Example

The D-state component of the wave function, $w(r)$, will not in general have the usual asymptotic form for this potential due to the term $-2 \hbar^{2} / M r^{2}$ in $V_{L S}(r)$. This is of no concern for the deuteron bound state, but does affect the scattering states; for instance, the usual effective range expansion is inapplicable. This feature can be removed by truncating the potentials, without affecting the solubility of the equations. We give here a numerical example for such a truncated potential, with a hard core of radius r_{0} and an attractive square well of radius r_{1}. That is, we write

$$
\begin{array}{ll}
u(r)=w(r)=0, & r<r_{0} \\
v(r)=1, & r_{0} \leqslant r \leqslant r_{1} \\
V_{C}(r)=V_{T}(r)=V_{L S}(r)=0, & r>r_{1} \tag{5}
\end{array}
$$

the solutions being obtained by matching the solution of equation (4) for region (ii) with those of equation (1) for region (iii), on the boundary $r=r_{1}$.

The results are given in Table 1 for a spread of hard core radius r_{0} and potential width r_{1}. For a given choice of r_{0} and r_{1}, V_{C} and V_{T} have been somewhat arbitrarily fitted to the deuteron binding energy and singlet scattering length. The parameter $V_{L S}$ has been fitted by demanding that the expectation value of $V_{L S}(r)$ be zero over the deuteron ground state. Table 1 then gives for each potential the deuteron state probability $P_{D} \%$, and quadruple moment Q, and the singlet effective range $r_{0 S}$ and triplet
scattering length $a_{0 T}$ and effective range $r_{0 T}$. The details of the computation can be found in Davies (1962). The numerical work was carried out on an English Electric DEUCE computer.

Table 2
reactance matrix elements for the potential of equation (5)
WITH THE PARAMETERS $r_{0}=0.5 \mathrm{fm}, r_{1}=2.72 \mathrm{fm}$

$E(\mathrm{MeV})$	X_{00}	X_{02}	X_{22}
10^{-6}	$-9 \cdot 11 \times 10^{-4}$	$-7 \cdot 66 \times 10^{-12}$	$-1 \cdot 62 \times 10^{-19}$
10^{-4}	$-9 \cdot 11 \times 10^{-3}$	$-7 \cdot 67 \times 10^{-9}$	$-1 \cdot 62 \times 10^{-14}$
10^{-2}	$-9 \cdot 12 \times 10^{-2}$	$-7 \cdot 68 \times 10^{-6}$	$-1 \cdot 62 \times 10^{-9}$
1	$-1 \cdot 101$	$-9 \cdot 47 \times 10^{-3}$	$-1 \cdot 78 \times 10^{-4}$
2	$-1 \cdot 95$	$-3 \cdot 30 \times 10^{-2}$	$-1 \cdot 08 \times 10^{-3}$
3	$-3 \cdot 26$	$-8 \cdot 28 \times 10^{-2}$	$-3 \cdot 49 \times 10^{-3}$
4	$-6 \cdot 01$	$-2 \cdot 04 \times 10^{-1}$	$-9 \cdot 70 \times 10^{-3}$
5	$-17 \cdot 4$	$-7 \cdot 40 \times 10^{-1}$	$-3 \cdot 62 \times 10^{-2}$
6	$+29 \cdot 9$	$+1 \cdot 53$	$+7 \cdot 11 \times 10^{-2}$
7	$+8 \cdot 87$	$+5 \cdot 30 \times 10^{-1}$	$+2 \cdot 14 \times 10^{-2}$
8	$+5 \cdot 42$	$+3 \cdot 71 \times 10^{-1}$	$+1 \cdot 15 \times 10^{-2}$
9	$+3 \cdot 99$	$+3 \cdot 08 \times 10^{-1}$	$+5 \cdot 72 \times 10^{-3}$
10	$+3 \cdot 19$	$+2 \cdot 74 \times 10^{-1}$	$+8 \cdot 36 \times 10^{-4}$
12	$+2 \cdot 33$	$+2 \cdot 41 \times 10^{-1}$	$+8 \cdot 75 \times 10^{-3}$
14	$+1 \cdot 84$	$+2 \cdot 25 \times 10^{-1}$	$+1.93 \times 10^{-2}$
16	+1.54	$+2 \cdot 16 \times 10^{-1}$	$+3 \cdot 11 \times 10^{-2}$
18	$+1 \cdot 31$	$+2 \cdot 11 \times 10^{-1}$	$+4 \cdot 42 \times 10^{-2}$
20	$+1 \cdot 15$	$+2 \cdot 07 \times 10^{-1}$	$+5 \cdot 84 \times 10^{-2}$
25	$+8 \cdot 49 \times 10^{-1}$	$+2 \cdot 02 \times 10^{-1}$	$+9 \cdot 84 \times 10^{-2}$

For comparison, the measured values of the quantities calculated are (Blatt and Weisskopf 1952):

$$
\left.\begin{array}{rlrlr}
B . E . & =2 \cdot 226 \mathrm{MeV}, & & P_{D} \% \sim 5 \%, & Q=2.74 \times 10^{-27} \mathrm{~cm}^{2}, \tag{6}\\
a_{0 S} & =-23 \cdot 7 \mathrm{fm}, & & r_{0 S} \sim 2.7 \mathrm{fm}, &
\end{array}\right\}
$$

For the potential ($r_{0}=0.5 \mathrm{fm}, r_{1}=2.72 \mathrm{fm}$), Table 2 lists the elements of the reactance matrix \mathbf{X} (Delves 1960), for various centre-of-mass energies up to 25 MeV . It is seen that there is an S-wave resonance at between 5 and 6 MeV .

III. References

Barut, A. O., and Calogero, F. (1962).-Phys. Rev. 128: 1383.
Bethe, H. A., and Kinoshita, T. (1962).-Phys. Rev. 128: 1418.
Bhattacharjie, A., and Sudarshan, E. C. G. (1962).-Nuovo Cim. 25: 864.
Blatt, J. M., and Weisskopf, V. (1952).-"Theoretical Nuclear Physics." (Wiley: New York.)
Davies, B. (1962).-Thesis, University of New South Wales.
Delves, L. M. (1960).-Nuclear Phys. 20: 275.
Nicholson, A. F. (1962).-Aust. J. Phys. 15: 169, 174.
Regge, T. (1959).-Nuovo Cim. 14: 951:

[^0]: * This research was supported in part by United States Air Force Research Grant No. 26-400 to the University of New South Wales.
 \dagger Applied Mathematics Department, University of New South Wales, Kensington, N.S.W.
 \ddagger Present Address: Weapons Research Establishment, Salisbury, S. Aust.

