AN EXACTLY SOLUBLE TWO-BODY PROBLEM WITH NON-CENTRAL FORCES*

By B. DAVIES[†][‡] and L. M. DELVES[†]

[Manuscript received April 11, 1963]

Summary

A class of local potentials is given which includes hard cores and a finite-range central, tensor, and L.S part, and for which the lowest two neutron-proton states $(J = 0, \pi = +1 \text{ and } J = 1, \pi = +1)$ are exactly soluble. A numerical example is given in which the form factor for the potentials is a hard core plus square well.

I. A CLASS OF EXACTLY SOLUBLE POTENTIALS

There has been some interest recently (Regge 1959; Barut and Calogero 1962; Bethe and Kinoshito 1962; Bhattacharjie and Sudarshan 1962; Nicholson 1962) in the analytic properties of the scattering amplitude for the non-relativistic Schrodinger equation, in the hope that these properties may have some relevance to quantum field theory; and in this connexion there has been continuing interest in soluble two-body systems. We give here a class of potentials for which the J = 0, $\pi = +1$ and J = 1, $\pi = +1$ states of the neutron-proton system are exactly soluble. These potentials may include hard cores; they contain in addition finite range central, tensor, and L.S parts.

The J = 0, $\pi = +1$ state is an uncoupled S state, and is immediately soluble for the potentials we consider. The radial equations for the J = 1, $\pi = +1$ state are, in the usual notation (Blatt and Weisskopf 1952),

$$\begin{bmatrix} \frac{\hbar^2}{M} \frac{d^2}{dr^2} + E - V_C(r) \end{bmatrix} u(r) = \sqrt{8} \cdot V_T(r) w(r),$$

$$\begin{bmatrix} \frac{\hbar^2}{M} \frac{d^2}{dr^2} + E - \frac{6\hbar^2}{Mr^2} - V_C(r) + 2V_T(r) - 3V_{LS}(r) \end{bmatrix} w(r) = \sqrt{8} \cdot V_T(r) u(r).$$
(1)

We consider a potential with the following form in the triplet state

$$\begin{cases} V_{c}(r) = -V_{c}v(r), \\ V_{T}(r) = -V_{T}v(r), \\ V_{LS}(r) = +V_{LS}v(r) - 2\hbar^{2}/Mr^{2}, \end{cases}$$

$$\begin{cases} \phi(r) = u(r) + \beta w(r), \\ \beta^{2} + \frac{3V_{LS} + 2V_{T}}{2\sqrt{2}V_{T}}\beta + 1 = 0, \\ V_{E}(r) = 2\sqrt{2}\beta V_{T}(r) + V_{c}(r). \end{cases}$$

$$\end{cases}$$

$$(2)$$

$$\end{cases}$$

$$\end{cases}$$

$$(3)$$

* This research was supported in part by United States Air Force Research Grant No. 26–400 to the University of New South Wales.

† Applied Mathematics Department, University of New South Wales, Kensington, N.S.W.

[‡] Present Address: Weapons Research Establishment, Salisbury, S. Aust.

In terms of these quantities, equation (1) becomes

$$\left\{\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{M}{\hbar^2} \left[E - V_E(r) \right] \right\} \phi = 0, \qquad (4)$$

the solution of which is known if the Schrödinger equation for S states can be solved for the central potential v(r). There are two solutions, corresponding to the two roots β_1 and β_2 of (3); these define u(r) and w(r).

r ₀ (fm)	r_1 (fm)	V_C (MeV)	V_T (MeV)	V_L (MeV)	Р _D (%)	$Q = (10^{-27} W^2)$	r ₀₅ (fm)	a ₀₇ (fm)	r_{0T} (fm)
0.4	$2 \cdot 4$	$24 \cdot 0$	16.5	36 · 2	3.6	$2 \cdot 1$	$2 \cdot 94$	5.67	$2 \cdot 12$
$0 \cdot 4$	$2 \cdot 6$	$19 \cdot 7$	$14 \cdot 8$	$31 \cdot 8$	$4 \cdot 0$	$2 \cdot 4$	$3 \cdot 16$	5.77	$2 \cdot 49$
$0 \cdot 4$	$2 \cdot 8$	$16 \cdot 4$	$13 \cdot 4$	$28 \cdot 2$	$4 \cdot 4$	2.74	$3 \cdot 36$	$5 \cdot 86$	$2 \cdot 25$
$0 \cdot 5$	$2\cdot 2$	$33 \cdot 5$	18.7	$38 \cdot 2$	$3 \cdot 4$	$1 \cdot 8$	$2 \cdot 83$	$5 \cdot 61$	1.92
$0 \cdot 5$	$2 \cdot 4$	$26 \cdot 6$	16.5	$33 \cdot 3$	$3 \cdot 8$	$2\cdot 2$	$3 \cdot 05$	$5 \cdot 71$	2.17
$0 \cdot 5$	$2 \cdot 6$	$21 \cdot 7$	$14 \cdot 8$	$29 \cdot 3$	$4 \cdot 2$	$2 \cdot 5$	$3 \cdot 27$	$5 \cdot 87$	2.54
0.5	$2 \cdot 72$	$19 \cdot 3$	$13 \cdot 9$	$27 \cdot 3$	$4 \cdot 5$	$2 \cdot 74$	$3 \cdot 40$	$5 \cdot 86$	2.31
$0 \cdot 5$	$2 \cdot 8$	$17 \cdot 9$	$13 \cdot 4$	$26 \cdot 1$	$4 \cdot 7$	$2 \cdot 9$	$3 \cdot 49$	$5 \cdot 90$	2.36
$0 \cdot 6$	$2 \cdot 2$	$37 \cdot 9$	$18 \cdot 9$	$35 \cdot 3$	$3 \cdot 6$	$2 \cdot 0$	$2 \cdot 95$	$5 \cdot 65$	1.98
0.6	$2 \cdot 4$	$29 \cdot 8$	16.7	$30 \cdot 9$	$4 \cdot 1$	$2 \cdot 3$	$3 \cdot 16$	$5 \cdot 75$	2 · 23
0.6	$2 \cdot 6$	$23 \cdot 9$	$15 \cdot 0$	$27 \cdot 2$	$4 \cdot 5$	$2 \cdot 6$	$3 \cdot 39$	$5 \cdot 85$	2.59
$0 \cdot 6$	$2 \cdot 8$	$19 \cdot 7$	$13 \cdot 4$	$24 \cdot 3$	$4 \cdot 9$	$3 \cdot 0$	$3 \cdot 61$	$5 \cdot 94$	2.36

 TABLE 1

 PARAMETERS OF THE TWO-BODY SYSTEM FOR THE POTENTIAL OF EQUATION (5)

II. A NUMERICAL EXAMPLE

The *D*-state component of the wave function, w(r), will not in general have the usual asymptotic form for this potential due to the term $-2\hbar^2/Mr^2$ in $V_{LS}(r)$. This is of no concern for the deuteron bound state, but does affect the scattering states; for instance, the usual effective range expansion is inapplicable. This feature can be removed by truncating the potentials, without affecting the solubility of the equations. We give here a numerical example for such a truncated potential, with a hard core of radius r_0 and an attractive square well of radius r_1 . That is, we write

$$\begin{array}{l} u(r) &= w(r) &= 0, & r < r_0, & (i) \\ v(r) &= 1, & r_0 \leqslant r \leqslant r_1, & (ii) \\ V_c(r) &= V_T(r) = V_{LS}(r) = 0, & r > r_1, & (iii) \end{array} \right\}$$
(5)

the solutions being obtained by matching the solution of equation (4) for region (ii) with those of equation (1) for region (iii), on the boundary $r = r_1$.

The results are given in Table 1 for a spread of hard core radius r_0 and potential width r_1 . For a given choice of r_0 and r_1 , V_c and V_T have been somewhat arbitrarily fitted to the deuteron binding energy and singlet scattering length. The parameter V_{LS} has been fitted by demanding that the expectation value of $V_{LS}(r)$ be zero over the deuteron ground state. Table 1 then gives for each potential the deuteron state probability $P_D \%$, and quadruple moment Q, and the singlet effective range r_{0S} and triplet

scattering length a_{0T} and effective range r_{0T} . The details of the computation can be found in Davies (1962). The numerical work was carried out on an English Electric DEUCE computer.

with the PARAMETERS $r_0 = 0.0$ mil, $r_1 = 2.12$ m							
E (MeV)	X_{00}	X 02	X 22				
10-6	$-9 \cdot 11 \times 10^{-4}$	$-7.66 imes 10^{-12}$	$-1.62 imes 10^{-19}$				
10-4	$-9 \cdot 11 \times 10^{-3}$	-7.67×10^{-9}	$-1.62 imes 10^{-14}$				
10^{-2}	$-9 \cdot 12 imes 10^{-2}$	$-7.68 imes 10^{-6}$	$-1.62 imes 10^{-9}$				
1	-1.101	$-9\cdot47 imes10^{-3}$	$-1.78 imes 10^{-4}$				
2	-1.95	$-3 \cdot 30 imes 10^{-2}$	-1.08×10^{-3}				
3	$-3 \cdot 26$	-8.28×10^{-2}	$-3 \cdot 49 imes 10^{-3}$				
4	-6.01	$-2.04 imes 10^{-1}$	$-9.70 imes 10^{-3}$				
5	-17.4	$-7 \cdot 40 imes 10^{-1}$	$-3.62 imes 10^{-2}$				
6	$+29 \cdot 9$	+1.53	$+7.11 imes 10^{-2}$				
7	+8.87	$+5.30 imes 10^{-1}$	$+2\cdot 14 imes 10^{-2}$				
8	+5.42	$+3.71 imes 10^{-1}$	$+1\cdot15 imes10^{-2}$				
9	+3.99	$+3.08 imes 10^{-1}$	$+5.72 imes 10^{-3}$				
10	+3.19	$+2.74 imes 10^{-1}$	$+8.36 imes 10^{-4}$				
12	+2.33	$+2 \cdot 41 imes 10^{-1}$	$+8.75 imes 10^{-3}$				
14	+1.84	$+2\cdot 25 imes 10^{-1}$	$+1\cdot 93 imes 10^{-2}$				
16	+1.54	$+2\cdot 16 imes 10^{-1}$	$+3 \cdot 11 \times 10^{-2}$				
18	+1.31	$+2 \cdot 11 imes 10^{-1}$	$+4 \cdot 42 imes 10^{-2}$				
20	+1.15	$+2.07 imes 10^{-1}$	$+5.84 imes 10^{-2}$				
25	$+8 \cdot 49 \times 10^{-1}$	$+2\cdot 02 imes 10^{-1}$	$+9.84 imes 10^{-2}$				

Table 2 Reactance matrix elements for the potential of equation (5) with the parameters $r_0 = 0.5$ fm, $r_1 = 2.72$ fm

For comparison, the measured values of the quantities calculated are (Blatt and Weisskopf 1952):

B.E	$= 2 \cdot 226$ MeV,	$P_D \%$	$\sim 5\%$,	$Q = 2.74 \times 10^{-27} \text{ cm}^2$,)	
a_{0S}	$= -23 \cdot 7$ fm,	r _{0.5}	$\sim 2 \cdot 7$ fm,		Y	(6)
a_{0T}	$= 5 \cdot 38 \text{ fm},$	r_{0T}	= 1.7 fm.		J	

For the potential ($r_0 = 0.5$ fm, $r_1 = 2.72$ fm), Table 2 lists the elements of the reactance matrix **X** (Delves 1960), for various centre-of-mass energies up to 25 MeV. It is seen that there is an S-wave resonance at between 5 and 6 MeV.

III. References

BARUT, A. O., and CALOGERO, F. (1962).—Phys. Rev. 128: 1383.
BETHE, H. A., and KINOSHITA, T. (1962).—Phys. Rev. 128: 1418.
BHATTACHARJIE, A., and SUDARSHAN, E. C. G. (1962).—Nuovo Cim. 25: 864.
BLATT, J. M., and WEISSKOPF, V. (1952).—"Theoretical Nuclear Physics." (Wiley: New York.)
DAVIES, B. (1962).—Thesis, University of New South Wales.
DELVES, L. M. (1960).—Nuclear Phys. 20: 275.
NICHOLSON, A. F. (1962).—Aust. J. Phys. 15: 169, 174.
REGGE, T. (1959).—Nuovo Cim. 14: 951: