THE NUMBER OF INDEPENDENT VARIABLES FOR AN n-PARTICLE COLLISION*

By J. Cunningham \dagger

Suppose we have n vectors in a space of dimensionality $\nu, n \geqslant \nu$, and that we define scalar products $S_{i j}$ between the vectors p_{i} as follows

$$
\begin{equation*}
S_{i j}=p_{i} p_{j}=\sum_{a, \beta}^{\nu} g_{a \beta} p_{a i} p_{\beta i} \tag{1}
\end{equation*}
$$

where $g_{a \beta}=g_{\beta a}$ and $\operatorname{det}\left(g_{a \beta}\right) \neq 0$.
In matrix notation we write (1) as

$$
\begin{equation*}
S=\widetilde{P} G P \tag{2}
\end{equation*}
$$

If the rank of a matrix is denoted by r, we have $r(G)=\nu$, and, in general, $r(P)=\nu$, so that, in general, $r(S)=\nu$.

Thus we can find an orthogonal matrix O such that the symmetric matrix S can be written

$$
\begin{equation*}
S=\widetilde{O} \Lambda O \tag{3}
\end{equation*}
$$

where Λ is the diagonal matrix

$$
\begin{equation*}
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \tag{4}
\end{equation*}
$$

Since $r(S)=\nu$, we may write

$$
\begin{equation*}
\lambda_{\nu+1}=\lambda_{\nu+2}=\ldots=\lambda_{n}=0 \tag{5}
\end{equation*}
$$

Consequently the number of independent parameters in the matrix O is $\frac{1}{2} n(n-1)-\frac{1}{2}(n-\nu)(n-\nu-1)$. Thus the matrix S depends on

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-\nu)(n-\nu-1)+\nu
$$

independent parameters.
In the physical problem of the scattering of n-particles (neutral scalar bosons) the p_{i} are the four-momenta $(\nu=4)$ of the colliding particles. Energy-momentum conservation requires that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=0 \tag{6}
\end{equation*}
$$

and the lengths of the vectors p_{i} are interpreted as particle masses m_{i} which we agree to fix.

$$
\begin{equation*}
p_{i}^{2}=m_{i}^{2}, \quad i=1,2, \ldots, n \tag{7}
\end{equation*}
$$

[^0]Thus the number N of independent variables describing the process is

$$
\begin{equation*}
N=\frac{1}{2}(n-1)(n-2)-\frac{1}{2}(n-\nu-1)(n-\nu-2)+\nu-n . \tag{8}
\end{equation*}
$$

If the p_{i} happen to be insufficient in number to span the space (i.e. $n<\nu$) S will clearly be a general symmetric matrix having $\frac{1}{2} n(n+1)$ independent elements. In this case the number of variables describing the scattering process does not depend on ν and is

$$
\begin{equation*}
N=\frac{1}{2}(n-1) n-n=\frac{1}{2} n(n-3), \quad n<\nu+1 . \tag{9}
\end{equation*}
$$

Combining (8) and (9) we have finally

$$
\begin{equation*}
N=\frac{1}{2} n(n-3)-\frac{1}{2}(n-\nu-1)(n-\nu) \theta(n-\nu-1), \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta(x) & =1, & & x>0, \\
& =0, & & x<0 .
\end{aligned}
$$

This problem is mentioned by Chan Hong Mo* and reference is made to the present discussion which was communicated privately by the present author.

[^0]: * Manuscript received August 7, 1963.
 \dagger University College of North Wales, Bangor, U.K.

