TWO-BODY BOUND STATE AND SCATTERING
 WITH NON-CENTRAL FORCES

By A. F. Nicholson*
[Manuscript received October 9, 1963]
Summary

A class of local potentials containing central, tensor, and L.S parts is considered, for which the n-p coupled radial equations for the $\pi=-1$ states of any J reduce to uncoupled equations over a region R of r. If R is finite all potentials may be of short range. The possibilities of describing the deuteron and n-p scattering by this model are considered. It is shown that the observed values of the high-energy mixing parameters $\epsilon_{2}, \epsilon_{4}$ may be fitted without solving the wave equations.

I. A Class of Exactly Soluble Potentials

Nicholson (1962) and Davies and Delves (1963) have shown that the $J=1$, $\pi=-1$ bound state of the neutron and proton system becomes "exactly soluble" for certain classes of non-central potentials: in the former case for a central plus a tensor potential having an r^{-2} radial dependence, and in the latter case for a central plus tensor plus a spin-orbit potential containing an r^{-2} term.

In this paper we consider the $\pi=-1$ states for any value of J, for a group of central plus tensor plus spin-orbit potentials that includes those of Nicholson and some of those of Davies and Delves. These potentials lead to uncoupled Schrodinger equations, and also lead to values of the mixing parameters used to describe neutronproton scattering without the need to solve the Schrodinger equations.

Suppose that neutron and proton interact through two-body potentials having central, tensor, and spin-orbit components. The non-relativistic Schrodinger equation for the $\pi=-1$ states of angular momentum J yields the coupled radial equations

$$
\begin{array}{r}
u^{\prime \prime}+\left[k^{2}+W_{C}+(J-1) W_{L S}-\frac{2(J-1)}{2 J+1} W_{T}-\frac{(J-1) J}{r^{2}}\right] u+\frac{6\{J(J+1)\}^{\frac{1}{2}}}{2 J+1} W_{T} w=0 \\
w^{\prime \prime}+\left[k^{2}+W_{C}-(J+2) W_{L S}-\frac{2(J+2)}{2 J+1} W_{T}-\frac{(J+1)(J+2)}{r^{2}}\right] w+\frac{6\{J(J+1)\}^{\frac{1}{2}}}{2 J+1} W_{T} u=0 \tag{1}
\end{array}
$$

while for the $\pi=+1$ state of momentum J the radial equation is

$$
\begin{equation*}
v^{\prime \prime}+\left[k^{2}+W_{C}-W_{L S}+2 W_{T}-\frac{J(J+1)}{r^{2}}\right] v=0 \tag{3}
\end{equation*}
$$

[^0]where we have written the potentials V as
\[

$$
\begin{aligned}
V_{C}(r) & =-\left(M / \hbar^{2}\right) W_{C} \\
V_{T}(r) & =-\left(M / \hbar^{2}\right) W_{T} \\
V_{L S}(r) & =-\left(M / \hbar^{2}\right) W_{L S}
\end{aligned}
$$
\]

If we suppose that, over a certain region R of r,

$$
\begin{equation*}
w=\beta u \tag{4}
\end{equation*}
$$

where β is a constant, then (1) and (2) require that, within R,

$$
\begin{equation*}
(2 J+1)^{2}\left(2 / r^{2}+W_{L S}\right)+6 W_{T}\left[1+\{J(J+1)\}^{\frac{1}{2}}(\beta-1 / \beta)\right]=0 . \tag{5}
\end{equation*}
$$

R might consist of several subregions R_{n}, each characterized by a constant β_{n}. The quadratic equation (5) has roots β_{1}, β_{2} satisfying

$$
\begin{equation*}
\beta_{1} \beta_{2}=-1 \tag{6}
\end{equation*}
$$

and it is convenient to take $\left|\beta_{1}\right|<1$. If (5) is true, then (1) and (2) have within R two independent solutions $\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right)$ in which

$$
\left.\begin{array}{l}
w_{1}=\beta_{1} u_{1} \tag{7}\\
w_{2}=\beta_{2} u_{2}=-\left(1 / \beta_{1}\right) u_{2}
\end{array}\right\}
$$

and u_{1}, u_{2} satisfy the two equations
$u_{1,2}^{\prime \prime}+\left[k^{2}+W_{C}+(J-1) W_{L S}+\frac{6 \beta_{1,2}\{J(J+1)\}^{\frac{1}{2}}-2(J-1)}{2 J+1} W_{T}-\frac{J(J-1)}{r^{2}}\right] u_{1,2}=0$.
The solution of each equation contains two arbitrary constants: if R includes $r=0$ we particularize on the solutions satisfying

$$
\begin{equation*}
u_{1}(0)=u_{2}(0)=0 \tag{9}
\end{equation*}
$$

If R is a finite region then all potentials may be of short range, but if R is $(0, \infty)$ then at least one of $W_{L S}$ and W_{T} must contain a long-range r^{-2} component over all r. If R is $(0, \infty)$ and if (5) is to hold for more than one value of J, then $W_{L S}$ must contain this term.

II. Ground State

If (4) holds over R in the $J=1$ bound state of the system, then (5) is

$$
\begin{equation*}
2 / r^{2}+W_{L S}+\frac{2}{3} W_{T}\left[1+2^{\frac{1}{2}}(\beta-1 / \beta)\right]=0 . \tag{10}
\end{equation*}
$$

Any set of potentials satisfying (10) within R causes (1) and (2) for $J=1$ to reduce to

$$
\begin{equation*}
u_{1,2}^{\prime \prime}+\left[-\alpha^{2}+W_{C}+2^{3 / 2} \beta_{1,2} W_{T}\right] u_{1,2}=0, \tag{11}
\end{equation*}
$$

where $-\alpha^{2}$ replaces k^{2}. Outside R, (1) and (2) hold, and u, w, u^{\prime}, and w^{\prime} must be continuous at the boundaries of R.

Suppose that R is $(0, \infty)$. Provided that W_{C}, W_{T} diminish at least like r^{-2} at large r, u_{1} and u_{2} are asymptotically

$$
u_{1,2} \sim a_{1,2} \mathrm{e}^{-\alpha r}+b_{1,2} \mathrm{e}^{\alpha r}
$$

Using (7), the ground state is the linear combination

$$
\left.\begin{array}{l}
u_{\mathrm{g}}=c_{1} u_{1}+c_{2} u_{2} \tag{12}\\
w_{\mathrm{g}}=\beta_{1} c_{1} u_{1}-\left(1 / \beta_{1}\right) c_{2} u_{2}
\end{array}\right\}
$$

and for $u_{\mathrm{g}}, w_{\mathrm{g}}$ to behave suitably at large r we must have

$$
\begin{aligned}
c_{1} b_{1}+c_{2} b_{2} & =0 \\
\beta_{1} c_{1} b_{1}-\left(\mathbf{l} / \beta_{1}\right) c_{2} b_{2} & =0
\end{aligned}
$$

which is only possible if $b_{1}=c_{2}=0$, if $b_{2}=c_{1}=0$, or if $b_{1}=b_{2}=0$. That is, a bound state is only possible if u_{1} is already correctly behaved at $r=0$ and $r=\infty$, or if u_{2} is suitably behaved, or if both are (in which case the bound state would be degenerate). Otherwise, no linear combination can give u_{g} and w_{g} correct behaviour. If $u, \beta u$ is the appropriate solution, then the normalization integral gives for d, the fraction of D-state contained in the ground state, the value

$$
\begin{equation*}
d=\beta^{2} /\left(1+\beta^{2}\right) \tag{13}
\end{equation*}
$$

It is well known that d should be about 0.04 in order to accord with the observed value of the magnetic moment of the deuteron.

Suppose that R is $(0, a)$ and that $W_{C}=W_{T}=W_{L S}=0$ for $r>a$. Within R the state is the linear combination (12). Continuity of wave function and its slope at $r=a$ requires that

$$
\begin{aligned}
c_{1} u_{1}+c_{2} u_{2} & =\mathrm{e}^{-\alpha a} \\
\beta_{1} c_{1} u_{1}-\left(1 / \beta_{1}\right) c_{2} u_{2} & =\lambda \mathrm{e}^{-\alpha a}\left(1+3 / \alpha a+3 / \alpha^{2} a^{2}\right)
\end{aligned}
$$

and similarly for $u_{1}^{\prime}, u_{2}^{\prime}$; where $u_{1}=u_{1}(a)$ and so on. From these expressions follow

$$
\begin{aligned}
c_{1,2} & =\mathrm{e}^{-\alpha a} \frac{\alpha u_{2,1}(a)+u_{2,1}^{\prime}(a)}{u_{1,2}(a) u_{2,1}^{\prime}(a)-u_{1,2}^{\prime}(a) u_{2,1}(a)} \\
\lambda & =\frac{\alpha(\beta+1 / \beta) u_{1} u_{2}+\beta u_{1} u_{2}^{\prime}+(1 / \beta) u_{1}^{\prime} u_{2}}{\left(u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}\right)\left(1+3 / \alpha a+3 / \alpha^{2} a^{2}\right)}
\end{aligned}
$$

and the condition that, at $r=a$,

$$
\begin{equation*}
\left(u_{1}^{\prime} u_{2}^{\prime}+u_{1} u_{2} A \alpha\right)\left(1+\beta^{2}\right)+u_{1}^{\prime} u_{2}\left(A+\alpha \beta^{2}\right)+u_{1} u_{2}^{\prime}\left(A \beta^{2}+\alpha\right)=0 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\alpha+\frac{3}{a} \cdot \frac{2+\alpha a}{3+3 \alpha a+\alpha^{2} a^{2}} \tag{15}
\end{equation*}
$$

The fraction of D-state in the ground state is then readily seen to be

$$
\begin{equation*}
d=\frac{\beta^{2} \int_{0}^{a} u_{1}^{2} \mathrm{~d} r-\frac{2 c_{2}}{c_{1}} \int_{0}^{a} u_{1} u_{2} \mathrm{~d} r+\frac{c_{2}^{2}}{c_{1}^{2} \beta^{2}} \int_{0}^{a} u_{2}^{2} \mathrm{~d} r+\frac{c_{2}^{2} \lambda^{2}}{c_{1}^{2}} \int_{a}^{\infty} \mathrm{e}^{-2 \alpha r}\left(1+\frac{3}{\alpha r}+\frac{3}{\alpha^{2} r^{2}}\right)^{2} \mathrm{~d} r}{\left(1+\beta^{2}\right) \int_{0}^{a} u_{1}^{2} \mathrm{~d} r+\frac{c_{2}^{2}}{c_{1}^{2}}\left(1+\frac{1}{\beta^{2}}\right) \int_{0}^{a} u_{2}^{2} \mathrm{~d} r+\frac{1}{2 \alpha a} \mathrm{e}^{-2 \alpha a}+\frac{c_{2}^{2} \lambda^{2}}{c_{1}^{2}} \int_{a}^{\infty} \mathrm{e}^{-2 \alpha r}\left(1+\frac{3}{\alpha r}+\frac{3}{\alpha^{2} r^{2}}\right)^{2} \mathrm{~d} r} . \tag{16}
\end{equation*}
$$

In the particular case that W_{C}, W_{T} are constant for $r<a$ and zero otherwise, (10) requires that

$$
W_{L S 0}=W_{L S}+2 / r^{2}
$$

is similarly a square well. The solutions that vanish at $r=0$ are then

$$
u_{1}=\sin \gamma_{1} r, \quad u_{2}=\sin \gamma_{2} r
$$

and it is clear that

$$
\begin{aligned}
& r_{1}^{2}=W_{C}+2^{3 / 2} \beta_{1} W_{T}-\alpha^{2}>0, \\
& r_{2}^{2}=W_{C}-2^{3 / 2} \frac{1}{\beta_{1}} W_{T}-\alpha^{2}>0,
\end{aligned}
$$

for otherwise the continuity conditions at $r=a$ cannot be met. Using (10), it follows that

$$
\begin{equation*}
\gamma_{1}^{2}+\gamma_{2}^{2}=2 W_{C}-2 W_{T}-3 W_{L S 0}-2 \alpha^{2}>0 . \tag{17}
\end{equation*}
$$

Equation (14) represents a stronger condition on these potentials.
It can be seen from (16) that, for a given value of d for the ground state, a range of values of β is possible, provided that R is less than ($0, \infty$). For a given β, if (10) is satisfied at all, then it is satisfied for a range of potentials

$$
\begin{aligned}
W_{T} & =\mu\left(W_{T}\right)_{0} \\
W_{L S} & =-2 / r^{2}+\mu\left(W_{L S 0}\right)_{0}
\end{aligned}
$$

where μ takes any value. Thus the equations for u_{1}, u_{2} contain a parameter μ :

$$
u_{1,2}^{\prime \prime}+\left[-\alpha^{2}+W_{C}+2^{3 / 2} \beta_{1,2} \mu\left(W_{T}\right)_{0}\right] u_{1,2}=0,
$$

and so a range of functions u_{1}, u_{2} are available. For a given value of β, the functional form $\left(W_{T}\right)_{0}$, its magnitude μ, and the form and magnitude of W_{C} are available for variation to produce a normalizable wave function and to fit the observed value of the electric quadrupole moment,

$$
\begin{equation*}
Q=\frac{1}{5} \pi \mathrm{e} \int_{0}^{\infty}\left(u w .2^{3 / 2}-w^{2}\right) r^{2} \mathrm{~d} r \tag{18}
\end{equation*}
$$

The satisfaction of these two conditions does not exhaust the freedom in μ, W_{T}, and W_{C}, and so in u_{1}, u_{2}. So if R is $(0, a)$ there is a range available in d; as given by (16) when the potentials vanish outside R. Conversely, it is possible to obtain a desired d, as well as a bound state and a desired Q, over a range of values of β, accompanied by appropriate ranges of potential functions. As $a \rightarrow \infty$, however, the range of β that will yield d narrows to the single value given by (13).

The case treated by Nicholson (1962) was defined by

$$
\left.\begin{array}{rl}
R & =(0, \infty), \tag{19}\\
W_{L S}(r) & =0, \\
W_{T}(r) & =\frac{-3}{r^{2}\left[1+2^{\frac{1}{2}}(\beta-1 / \beta)\right]},
\end{array}\right\}
$$

and it was found that the binding energy, $d=0 \cdot 04$, and the observed Q of the deuteron could be fitted, as an example, by the simple wave function

$$
u=N\left(\mathrm{e}^{-\alpha r}-\mathrm{e}^{-\delta r}\right)
$$

and corresponding central potential

$$
\begin{equation*}
W_{C}=\frac{\left(\delta^{2}-\alpha^{2}\right) \mathrm{e}^{-(\delta-\alpha) r}}{1-\mathrm{e}^{-(\delta-\alpha) r}}+\frac{6.2^{\frac{1}{2}} \beta}{r^{2}\left[1+2^{\frac{1}{2}}(\beta-1 / \beta)\right]}, \tag{20}
\end{equation*}
$$

with $\beta=0 \cdot 204$, so that W_{C} had an r^{-2} repulsive core. By replacing (19) by

$$
\left.\begin{array}{rl}
W_{L S} & =W_{L S 0}(r)-2 / r^{2}, \tag{21}\\
W_{T} & =\frac{3 W_{L S 0}(r)}{2\left[1+2^{\frac{1}{2}}(\beta-1 / \beta)\right]},
\end{array}\right\}
$$

the r^{-2} term can be removed from both W_{C} and W_{T}; and if, further,

$$
W_{C}=\frac{\left(\delta^{2}-\alpha^{2}\right) \mathrm{e}^{-(\delta-\alpha) r}}{1-\mathrm{e}^{-(\delta-\alpha) r}}-\frac{3.2^{\frac{1}{2}} W_{0 L S}(r)}{\left[1+2^{\frac{1}{2}}(\beta-1 / \beta)\right]}
$$

then the same wave function (20) can be used to achieve the same fit for d and Q. The case treated by Davies and Delves (1963) used a common potential function $W(r)$, with

$$
\left.\begin{array}{rl}
W_{L S} & =V_{L S} W(r)-2 / r^{2} \tag{22}\\
W_{T} & =V_{T} W(r) \\
W_{C} & =V_{C} W(r)
\end{array}\right\}
$$

Their solution procedure is different and does not involve (4). The constants $V_{L S}$, V_{T}, and V_{C} are independent parameters. By using for $W(r)$ a square well with a hard core, Davies and Delves were able to obtain good fits to d and Q and to approximate to the singlet and triplet effective ranges and the triplet scattering length.

III. Scattering

If (5) is to hold for all J, with $W_{L S}$ and W_{T} independent of J, then, over R,

$$
\begin{equation*}
\frac{2}{r^{2}}+W_{L S}(r)=6 \gamma W_{T}(r) \tag{23}
\end{equation*}
$$

with γ a constant, and

$$
\begin{equation*}
\beta_{J}^{2}+\frac{1+\gamma(2 J+1)^{2}}{\{J(J+1)\}^{\frac{1}{2}}} \beta_{J}-1=0 \tag{24}
\end{equation*}
$$

The roots of (24) satisfy (6), and we choose $\left|\beta_{J 1}\right|<1$: then $\beta_{J 1} \rightarrow 0$ as $J \rightarrow \infty$. It should be noted that β is independent of k. For $\beta=\beta_{J 1, J 2}$, (1) and (2) reduce to (8), two uncoupled equations for u_{1} and u_{2}, and we choose the solutions satisfying (9).

In one of the standard scattering notations (Blatt and Biedenharn 1952) there are, for the case of scattering by central, tensor, and spin-orbit potentials, α and β eigenfunctions of the scattering matrix, which take the following asymptotic forms:

$$
\left.\begin{array}{rl}
u_{\alpha} & \sim \cos \epsilon_{J} \sin \left[k r-(J-1) \frac{1}{2} \pi+\delta_{\alpha}\right], \tag{25}\\
w_{\alpha} & \sim \sin \epsilon_{J} \sin \left[k r-(J+1) \frac{1}{2} \pi+\delta_{\alpha}\right] \\
& =-\tan \epsilon_{J} u_{\alpha}, \\
u_{\beta} & \sim-\sin \epsilon_{J} \sin \left[k r-(J-1) \frac{1}{2} \pi+\delta_{\beta}\right], \\
w_{\beta} & \sim \cos \epsilon_{J} \sin \left[k r-(J+1) \frac{1}{2} \pi+\delta_{\beta}\right] \\
& =\cot \epsilon_{J} u_{\beta} .
\end{array}\right\}
$$

If R is the whole range ($0, \infty$), then these relations are of the same form as (4) and we can make the identification

$$
\left.\begin{array}{rlrl}
u_{\alpha} & =u_{1}, & w_{\alpha} & =w_{1} \tag{26}\\
u_{\beta} & =u_{2}, & w_{\beta} & =w_{2} \\
\beta_{J 1} & =-\tan \epsilon_{J}, & & \beta_{J 2}
\end{array}\right\}
$$

and obtain the scattering eigenfunctions as the solutions of equations (8) satisfying (9). In the usual theory the forces are supposed to be of limited range and it then follows that $\epsilon_{J} \rightarrow 0$ as $k \rightarrow 0$ for each J. In the present case, however, in which at least the spin-orbit potential contains an r^{-2} term over the range $(0, \infty), \epsilon_{J}$ is independent of k.

If R is less than $(0, \infty)$, say $(0, a)$, and if the potentials are of limited range but not necessarily coterminous with R, then we know from the usual theory that $\epsilon_{J} \rightarrow 0$ as $k \rightarrow 0$. The α and β scattering eigenfunctions are then, within R, linear combinations of u_{1}, u_{2} :

$$
\left.\begin{array}{l}
u_{\alpha, \beta}=C_{1_{\alpha, \beta}} u_{1}+C_{2 \alpha, \beta} u_{2}, \tag{27}\\
w_{\alpha, \beta}=\beta_{1} C_{1_{\alpha, \beta}} u_{1}-(\mathbf{l} / \beta) C_{2_{\alpha, \beta}} u_{2},
\end{array}\right\}
$$

while, outside $R, u_{\alpha, \beta}, w_{\alpha, \beta}$ satisfy the coupled equations (1) and (2) and have the asymptotic forms (25). If $a \rightarrow \infty$, (27) and (25) require that $C_{2_{\alpha}} \rightarrow 0$ and $C_{1 \beta} \rightarrow 0$, and (26) results. We now consider scattering as k increases, with R held finite, say at $(0, a)$. We rewrite (8) in terms of the variable $\rho=k r / k_{0}$:

$$
\begin{gathered}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \rho^{2}} u_{1,2}(\rho)+\left\{k_{0}^{2}+\frac{k_{0}^{2}}{k^{2}}\left[W_{C}\left(\frac{k_{0}}{k} \rho\right)+(J-1) W_{L S}+\frac{6 \beta_{1,2}\{J(J+1)\}^{\frac{1}{2}}-2(J-1)}{2 J+1} W_{T}\right]\right. \\
\left.-\frac{J(J-1)}{\rho^{2}}\right\} u_{1,2}=0
\end{gathered}
$$

We may look at this as an equation for scattering at a fixed energy k_{0} : as k increases the potentials become shallower and of longer range, while R, which in ρ-space is
($0, k a / k_{0}$), becomes greater. So as $k \rightarrow \infty, R$ becomes ($0, \infty$) in ρ, and (26) again results. The scaling by k / k_{0} does not disturb the validity of (5) nor change the value of β_{1}. It follows that $\tan \epsilon_{J}$ approaches $-\beta_{1}$ asymptotically as k increases.

With this in mind it is interesting to look at the results of p-p phase-shift analysis as quoted, for example, by Scotti and Wong (1963). The parameter ϵ_{2} is about $-1 \cdot 3^{\circ}$ at 50 MeV and is nearly constant at $-2 \cdot 3^{\circ}$ from 100 to 400 MeV . The parameter ϵ_{4} is less constant, being about -1° at 150 MeV and perhaps $-1 \cdot 7^{\circ}$ at 400 MeV : we will take the value for large k to be $-1 \cdot 5^{\circ}$. On the model of the n-p interaction considered in this paper, and assuming charge-independence, we then obtain the estimates $\beta_{21}=0.040$ and $\beta_{41}=0.026$. From (20) the constant γ is

$$
\gamma=\left\{1 /(2 J+1)^{2}\right\}\left[1+\{J(J+1)\}^{\frac{1}{2}}(\beta-1 / \beta)\right] .
$$

Using $\beta_{21}=0.040$ we obtain the prediction that for $J=1, \beta_{11}=0 \cdot 062$, and from $\beta_{41}=0.026$ we obtain the estimate $\beta_{11}=0.075$. If, on the other hand, we assume that there is 4% of D-state in the ground state of the system, and that R is $(0, \infty)$, then (13) requires that $\beta_{11}=0 \cdot 204$. Whether, for a smaller region R, there exist potentials that can yield 4% of D-state in the ground state with a β_{11} substantially closer to the value of about 0.07 derived from the scattering data, is as yet unresolved.

IV. References

Blatt, J. M., and Biedenharn, L. C. (1952).-Phys. Rev. 86: 399.
Davies, B., and Delves, L. M. (1963).-Aust. J. Phys. 16: 311.
Nicholson, A. F. (1962).-Aust. J. Phys. 15: 169.
Scotit, A., and Wong, D. Y. (1963).-Phys. Rev. Letters 10: 142.

[^0]: * R. G. Menzies Research Laboratory, Philips Electrical Industries, Hendon, S. Aust.

