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Summary 

The theory governing the excitation of a linear mechanical system by a 
delta function impulse is summarized. In the case of a finite elastic rod excited by 
an impulse, the Fourier transform of the output function enables the frequency 
spectrum of the rod to be obtained. A spectrometer for accomplishing this operation 
is described and a comparative study is made between the impulse and resonance 
responses of a cylindrical rod. 

A discussion of the basic relationships involved in computing the dynamic 
elastic moduli and internal friction is presented, together with Borne typical data 
obtained by the mechanical impulse method. 

I. INTRODUCTION 

The elastic constants of both single crystals and polycrystalline materials may 
be determined from a knowledge of the velocity of plane elastic waves in the material. 
Important conclusions regarding the internal structure of the material may be drawn 
from measurements of the attenuation coefficient. The most common methods for 
measuring the velocity and attenuation coefficient are shown in Figure 1. The 
traditional method for measuring the dynamic elastic constants has been to employ 
a resonance method in which a standing wave pattern is established in the specimen. 
A number of different techniques may be employed for generating and detecting 
the waves including electrostatic, electrodynamic, and piezoelectric methods. 

In recent years, a number of pulse methods have been developed (Mason 1958) 
which involve the direct timing of the passage of a wave packet as it is transmitted 
through the material or as it is reflected multiply within the material. The wave 
packets are usually introduced into the specimen and detected by means of quartz 
or barium titanate crystals cemented to the specimen. ·Whereas resonance methods 
are particularly successful at low frequencies where the vibration modes are easily 
identified, pulse methods have been found to be most suited to frequencies above 
1 MHz. One important advantage to be gained in the high frequency region is that 
small samples may be employed, since the wavelength is then of the order of 1 mm 
or less. 

The mechanical impulse method, to be described below, is a pulse method 
that operates successfully at low frequencies. Short-duration (wide frequency band) 
mechanical impulses are applied to one end of a specimen in the form of a rod or 
plate. The normal mode response of the system may then be obtained by Fourier 
analysis of the resulting motion. A capacitative detector is normally mounted 
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near the opposite end of the specimen. Measured values of the phase velocity enable 
the appropriate elastic modulus to be computed. Consequent advantages of this 
system are (i) apart from the supports, no physical contact with the specimen is 
required following excitation, (ii) all the desired normal modes of the specimen 
may be excited simultaneously, (iii) the decay of free vibrations for a given normal 
mode may be measured easily and accurately. 
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Fig. I.-Basic methods for measuring velocity and attenuation. (a) Travelling 
wave method; (b) single-pulse transit method; (0) standing wave (resonance) 

method; (d) reverberation (pulse echo) method. 

II. MECHANICAL IMPULSE METHOD-SUMMARY OF THEORY 

Provided the time interval over which the impulse is applied to the system 
is short compared with the response times involved in the system, the impulse may 
be treated as equivalent to a delta function. In this case, as shown by Pollard (1962a), 
the actual form of the impulse is immaterial. 
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When an impulse is applied to a linear system, the analysis of the response 
of the system may be carried out in terms of either time or frequency. From the 
experimental standpoint it is preferable to work in terms of frequency. Thus, if a 
known function f (t) is applied to a linear system, the input spectrum function, 
F(iw), may be found as the Fourier transform of f(t). When f(t) is a delta function 
it is readily shown that IF(iw)1 = 1. That is, the spectrum of a delta function has 
a value of unity at all frequencies. In the case of an arbitrary pulse of short duration 

for which J: a) f(t)dt = S, it may be shown that IF(iw)I--+S as the pulse duration 

tends to zero. S is sometimes referred to as the strength of the pulse. 

The output spectrum function, G(iw), of the system may be found (Lanczos 
1957) from 

G(iw) = F(iw).H(iw), (1) 

where H(iw) is the transfer function of the system. That is, each component of 
the input spectrum when multiplied by the corresponding component of the transfer 
function gives a component of the output spectrum. 

(a) Spectrum of a Mechanical Impulse 

Consider a mechanical impulse produced by the impact on the system of a 
mass mo moving with velocity Vo just prior to impact. If the impact is an elastic 
one then the momentum transferred to the system is mov~ = movo(l +e), where e 
is the coefficient of restitution. Then 

S= J:a)f(t)dt=mov~. (2) 

In the limit of very short impact time, I F(iw) I = mov~ and equation (1) becomes 

G(iw) = mov~H(iw). (3) 

If the output velocity function u(t) of &. system is measured or its Fourier transform, 
the velocity spectrum function U(iw), then, in equation (3), G(iw) is replaced by 
U(iw). In this case, H(iw) is identical with the mechanical admittance of the system, 
that is, the reciprocal of the mechanical impedance Z(iw), since by definition 
Z(iw) = F(iw)jU(iw). Thus, equation (3) may be written 

U(iw) = mov~jZ(iw). (4) 

From equation (4), the velocity spectrum may be computed for any mechanical 
system for which Z(iw) is known. 

(b) Mechanical Impulse applied to an Elastic Rod 

In order to determine the response of a given mechanical system when excited 
by a mechanical impulse, the following method may be employed (Pollard 1962a): 

(i) an analogous electrical circuit may be devised to represent the mechanical 
system, 
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(ii) the appropriate transfer function for this circuit may be computed using 
steady-state analysis, 

(iii) the response of the system may then be determined when excited by an 
impulse of strength S = mov~. 

Consider, then, the impact of a small elastic sphere on the end face of a semi
infinite elastic rod so that a longitudinal disturbance is produced in the rod. The 
mechanical impedance for this system is 

Z(iw) = Ro+iwmo-w2moRoOm, (5) 

where Ro = A(Ep)t is the characteristic impedance (a pure resistance in the case 
of an infinite rod), A the area of cross section, E Young's modulus, p the density 
of the rod, and Om the compliance. Substitution in equation (4) and rearrangement 
yields the relation, in non-dimensional form, 

(Rolmov~)1 U(iw)1 = [I +(wmoIRo)2(1 +E)]-t, (6) 

where 

E = (R~Omlmo)(w2moOm-2). 

The velocity spectrum will therefore remain uniform over the range of frequencies 
for which the right-hand side of equation (6) is unity. At higher frequencies, I U(iw)l 
falls off more rapidly as mo and Om are increased. The high frequency dependency 
is shown graphically by Pollard (1962a). 

(c) The Finite Elastic Rod 

The complete low frequency resonance response of a finite rod may be computed 
by the application of a transmission-line theory (Pollard 1962b). However, near 
resonant peaks, the theory may be simplified and may be shown to be in agreement 
with normal mode analysis. A mode impedance Zn may then be introduced 
(Skudrzyk 1958) that governs the response of the nth normal mode of the system 
and is defined by 

Zn = Rn+iwMn+1JiwOn> (7) 

where Rn> M n, and On are the equivalent resistance, mass, and compliance associated 
with the nth normal mode. As defined by Skudrzyk, these parameters depend on the 
type of force distribution (point source, line source, etc.) and on the relative locations 
of the point of observation and the point of application of the force. At each resonant 
peak, Zn = Rn. Then, the mechanical impedance of the system at resonanoe when 
excited by a mechanical impulse is (Pollard 1962a) 

Z(iw) = Rn+iwmo-w2moOmRn. (8) 

As might be expected, equation (8) is similar to equation (5) with Rn replacing Ro. 
SUbstituting equation (7) in equation (4) as before, yields an expression for the 
velocity spectrum similar to equation (6) with Rn replacing Ro. In the frequency 
region for which the right-hand side of equation (6) is unity, 

I U(iw) I = mov~/Rn" (9) 
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The particular resonant modes of a system that are excited will depend on the 
existence of spectral components of the force at the correct frequencies. In the 
range where the spectrum is essentially constant, a mechanical impulse will excite 
all the resonant modes of the system. By means of a suitable spectrometer the set 
of resonances generated by a mechanical impulse may be recorded. 

III. THE IMPULSE SPECTROMETER 

(a) Longitudinal Wave8 

The experimental arrangement for determining the response of a rod when 
excited longitudinally is shown in Figure 2. The feed mechanism consists of a supply 

sP£rum 1--6>' ':f' mo 

Fig. 2.-Mechanical impulse spectrometer for determining the 
response of a rod to longitudinal excitation. 

tube terminated by a metal gate which may be operated by a relay. Steel balls 
are released at a controlled rate and are directed against the end of the rod. The 
detector consists of the variable capacitor formed between the other end of the rod 
and a fixed electrode. The capacitor is connected into a resonant circuit which 
forms part of a crystal-controlled oscillator operating as a slope detector (Richardson 
1954). For convenience in adjusting the capacitor gap, a micrometer screw with flat 
end face is used as the fixed electrode. In the case of non-metallic specimens, the 
end face of the specimen may be coated with aquadag. 

The displacement, 8(iw), of the end face of the specimen corresponding to a 
resonant peak may be found from the expression for the velocity, equation (9). 
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Since s(iw) = U(iw)jiw, 

/s(iw)/ = mov~/wRn" (10) 

Following amplification, the output of the detector is fed into a wave analyser 
having a frequency range from 0 to 16 kHz. The response of the wave analyser is 

--+ 10 dB 
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~ 
13 dB 

T 

(b) 
Fig. 3.-Frequenoy response of a brass rod (alloy 305: length 75·76 em, radius 0·477 em, 
density 8· 48 g/em', centre clamp) using mechanical impulses. (a) Fast soan showing the first 
eight longitudinal modes; (b) slow scan of fundamental longitudinal mode. Frequenoy interval 

between impulses is 1 Hz. 

conveniently recorded on a high-speed level recorder. The frequencies of the resonant 
modes of the specimen may now be located by driving the wave analyser slowly 
through the appropriate frequency range while periodic impulses are applied to the 
specimen. For the accurate measurement of individual resonances the wave analyser 
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may be tuned manually to the peak response. An auxiliary oscillator is then switched 
into the wave analyser and adjusted to give maximum response at the same setting 
of the analyser. The frequency setting of the oscillator is then read accurately on 
the frequency counter. An example of a recorded spectrum is shown in Figure 3 
together with a detailed scan of the first resonant peak. 
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(b) 
Fig. 4.--Decay curves for fundamental longitudinal mode of a 
brass rod (same specimen as in Fig. 3), (a) using wa-ve analyser and 

oscilloscope, (b) using wave analyser and level recorder. 

The decay rate at a given resonant frequency is easily found by exciting the 
specimen with a single impulse and then recording the decay curve on the level 
recorder. Because of the logarithmic scale of the recorder, a straight line decay 
is obtained if the system has an exponential decay rate. In Figure 4 is shown 
the decay curve for the fundamental longitudinal mode of the specimen shown 
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in Figure 3, (a) recorded by means of the wave analyser and oscilloscope, and (b) 
recorded by means of the wave analyser and level recorder. When the decay 
rate becomes too short for accurate measurements it is then more satisfactory to 
measure the bandwidth of the resonant curve. 

(b) Torsional and Flexural Waves 

For the generation of torsional and flexural waves an arrangement similar to 
that shown in Figure 5 may be employed. A steel ball is allowed to fall onto a 
projecting lug attached to one end of the specimen while the detector electrode 
is mounted vertically over a similar lug attached either to the same or to the other 
end of the specimen. With this arrangement both torsional and flexural waves 
may be generated and detected. The torsional modes are clearly identified since, 
like the longitudinal modes, the frequency difference between resonant modes is 
constant whereas for flexural waves the frequency difference increases with frequency. 

IMPINGING 0 
BALL f 

DETECTOR 
ELECTRODE 

Fig. 5.-Impulse excitation and detection of torsional 
and flexural waves in a rod. 

(c) Examination of Impacts 

In Figure 6 are shown oscillograms' of a single impact on the end face of a 
brass rod. The time base of the oscilloscope was triggered externally by a signal 
derived from a photosensitive transistor when the ball interrupted a light beam 
just prior to impact. The unfiltered response is initially very complicated since the 
impulse, applied to a small area of the end of the rod, generates flexural waves as 
well as longitudinal. This is particularly so if the impact does not take place at 
the centre of the end face. There is also some evidence that surface waves are 
generated by the impact (McMillen 1946). However, the mounting conditions 
favour longitudinal waves, and after a short time the unwanted vibrations decay. 

IV. COMPARISON OF THE RESONANCE AND PULSE RESPONSES OF A CYLINDRICAL ROD 

It is of interest to compare the behaviour of a specimen in the form of a rod, 
(i) when driven continuously into resonance and (ii) when excited by a mechanical 
impulse. A theoretical discussion given in a previous paper (Pollard 1962b) suggests 
that the response of the rod should be identical in the two cases. The specimen 
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selected for the experiment was a cylindrical rod of drawn brass (Alloy 305: 61 % Cu, 
36% Zn, 3% Pb) of length 2·910 m, mean radius 0·477 em, computed density 
8·48 g/cm3. 

--.j 2MS~ 
(a) 

-.j ~.:~ 
(b) 

Fig. 6.-Initiation of vibrations in a brass rod (same specimen as in 
Fig. 3) following longitudinal impact. (a) Total output from slope 
detector-flexural modes below 1700 Hz attenuated by high-pass 
filter, v, (longitudinal) = 1994 Hz; (b) as in (a) but with time base 

of oscilloscope delayed by 100 ms after triggering. 

Continuous excitation of the specimen was achieved by an electrostatic drive 
system. One end of the specimen and a fixed electrode form a capacitor with a thin 
piece of mica as dielectric. When an alternating voltage is applied between the 
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specimen and the electrode, vibrations are induced in the specimen. The detector 
at the other end of the specimen is the same as that described in Section III(a). 

Measurements were made on the odd harmonics 1 to 21, for which the specimen 
was clamped at its centre. Measurements may be made using even harmonics when 
the specimen is clamped at two displacement nodes. In the case of the odd harmonics, 
because of the simpler mounting conditions, it is found that the accuracy of measure
ment is greater. If even harmonics are used, the location of the clamping points 
is very critical. All measurements were made at 22°0. 

The mean value vln, where v is the frequency and n is the mode number, for 
the odd harmonics n = 1 to n = 21 by the two methods are shown below together 
with the standard deviation of the measurements (for the number of measurements 
quoted, the standard deviation has the same value as the range of error found by 
applying the 't' test for a 99% confidence level). 

Electrostatic Drive 
517·4±0·1 Hz 

Impulse Excitation 
517·5±0·2 Hz 

With both methods, the main limiting factor is the stability ofthe oscillator employed. 
With the impulse method there is in addition the limit imposed by the minimum 
detectable change in frequency setting of the wave analyser. 

Further measurements on other metallic and non-metallic specimens confirmed 
the identity of the longitudinal resonant modes when measured by impulse excitation 
and by continuous excitation. 

v. MEASUREMENT OF DYNAMIC ELASTIC MODULI AND INTERNAL FRICTION 

(a) Longitudinal Waves 

Solution of the wave equation for an infinitely long, isotropic rod thin enough 
to be regarded as a one-dimensional medium shows that the phase velocity of plane 
longitudinal waves, CL, is related to the dynamic Young's modulus E by 

E = pct. (ll) 

Equation (ll) thus ignores lateral motions of the rod produced by "Poisson coupling". 

The measured or effective phase velocity, ci, of longitudinal waves in a rod 
of radius a is found to depend on the ratio alA where A is the wavelength. A typical 
dispersion curve is shown in Figure 7 for a brass rod (alloy 305), the highest harmonic 
included being the 60th for which V60 = 113 370 Hz. 

For some problems it is sufficient to compute an effective Young's modulus 
E', given by 

E' = p(ci)2, (12) 

but E' will now depend on the geometrical configuration of the specimen as well as 
on the material itself. In order to compute E, the phase velocity cL for a negligibly 
thin specimen must be determined. This may be done using a relationship first 
derived by Rayleigh (1894), namely, 

CL = ci[l +a27T2(aIA)2], (13) 

where a is Poisson's ratio. 
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Since the wavelength for a given mode of vibration is fixed by the length of 
the specimen, equation (13) may also be written 

Vn = v~[1 +u27T2(a/An)2], (14) 

where v~ is the effective frequency of the nth normal mode in a rod of radius a and 
Vn is the frequency of the nth normal mode in an infinitely thin rod of the same 
length. Thus, in terms of a finite cylindrical rod, equation (ll) may be written 

E = pct = P(Anvn)2 = 4pl2(v~)2 [1 + (n7Tua) 2] 2 
n2 _ 2l ' (15) 

where l is the length of the rod. This expression for E holds for small values of 
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Fig. 7.-Longitudinal wave velocity dispersion curve for 
a brass rod (alloy 305: length 75·76 em, radius 0·477 em). 
The abcissae may alternatively be stated in terms of 

a/A since a/A = 0·00315n for this specimen. 

a/A. When a/A approaches unity, a more precise calculation of CL involves the 
application of the Pochhammer-Chree theory, as discussed by Bancroft (1941). 
It may be noted, however, that, in order to compute E from equation (15), the 
value of Poisson's ratio must be known. 

(b) Poisson's Ratio 

From equation (14), it is seen that Poisson's ratio may be found if v~ is 
measured for a number of different values of a/A. It is then convenient to determine 
u from the slope of the graph of (l-v~/nvl) versus (a/A)2. In Figure 8 is shown such 
a graph for brass (alloy 305), the plotted points corresponding to the 15th, 25th, 
35th, and 45th harmonics. Some uncertainty arises as to the correct value of VI. 

If an incorrect value is assumed, the straight line does not pass through the origin. 
A new line drawn parallel to the original one applies the necessary correction to 
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the value of VI without altering the value of u, which only depends on the slope. 
Although measurements at only two harmonics are sufficient, additional check 
points are useful as a/).. increases, in order to determine whether Rayleigh's relationship 
is still valid. The value of u calculated from Figure 8 is 0·377. The corresponding 
values of ct. and E are: CL = 3020 mis, E = 7·72 X 1010 N /m2. 

Largely because of the number of squared quantities involved, values of the 
elastic moduli will be in error by about ±1 %. The velocity ci may be measured 
to within ±0'05% but the corrected velocity cL will be in error by about ±0·1%. 
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n = 45 
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Fig. S.-Graphical determination of Poisson's ratio: 
(l-V:/nvl) versus (a/>.)2 for the 15th, 25th, 35th, and 

45th harmonics of the brass rod quoted in Figure 7. 

In Table 1 are shown values of u, CL, and E for a number of different specimens, 
obtained by the impulse method. Commercial drawn alloys show considerable 
variations in values of CL and E, depending on such variables as the annealing 
treatment and whether the specimen is taken from the beginning or the end of the 
drawn material. 

(c) Tor8ional Waves 

The phase velocity of torsional waves, cT' in a rod is governed by the rigidity 
or shear modulus G. Solution of the wave equation for an infinitely long rod yields 
the relation 

G =pc~. (16) 

Since there is no configurational dispersion for the fundamental torsional mode in 
a finite cylindrical rod, equation (16) may be written 

G = 4pl2v!/n2. (17) 
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The following values were measured for the brass rod referred to in Section V (b) : 

VI = 1516 Hz, cT = 2297 mis, G = 4·47 X 1010 N/m2• 

If a given specimen is isotropic, Poisson's ratio may be found from E and G 
by means of the equation (Landau and Lifshitz 1959) 

a = E/2G-1. 

TABLE 1 
VALUES OF POISSON's RATIO, LONGITUDINAL WAVE VELOCITY, AND 

YOUNG's MODULUS 

Specimen 
Poisson's CL E 

Ratio (m/s) (N/m2 ) 

Brass alloy 305 0·377 3020 7'72xl01O 

Brass alloy 210 0·384 3050 7·83 
Brass alloy 303 0·356 3520 10·4 
Copper alloy 101 0·398 3240 9·40 
Aluminium 0·326 5130 7 ·10 
Polystyrene 0·360 1870 0·366 

Specimen Data: 

Length 
Mean 

Specimen Composition Radius 
(cm) 

(cm) 

Alloy 305 61 % Cu, 36% Zn, 3% Ph 75·76 0·477 
Alloy 210 62% Cu, 38% Zn 75·24 0·477 
Alloy 303 58% Cu, 39% Zn, 3% Ph 75·30 0·478 
Alloy 101 Approx. 98% Cu with some Ag 74·98 0·479 
Aluminium - 75·05 0·525 
Polystyrene - 73·00 0·644 

(18) 

Density 
(g/cm3 ) 

8·48 
8·41 
8·42 
8·96 
2·71 
1·04 

However, in practice, most metal rods exhibit some degree of anisotropy introduced 
by the manufacturing processes. Values of a found from equation (18) may then 
be in serious error. The anisotropy may be taken into account by a method devised 
by Bradfield and Pursey (1953), who introduced an anisotropy index a, defined as 
a = (a' -alia, where a' is the value of Poisson's ratio found by applying equation (18) 
and a is the value found from dispersion measurements, as in Section V(b) above. 

(d) Damping Measurements 

One of the advantages of the mechanical impulse method is the ease with 
which the damping of free vibrations of a normal mode may be measured. Since 
several measures are commonly used for the damping, the relationships between 
them have been summarized in Appendix r. The values of the loss factor, 7J = Q-l, 
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for the first longitudinal mode of the specimens referred to in Table 1 are as follows: 

Alloy 305 
alloy 210 
alloy 303 
alloy 101 
aluminium 
polystyrene 

8·40xl0-5 

5·35 
4·93 

20·2 
0·66 

530 

The quantity most easily measured by the mechanical impulse method is 
the decay rate D, expressed in decibels per second. The precision of measurement 
of D depends mainly on the error arising from the scale of the level recorder. Using 
an input potentiometer with a 50 decibel range, the uncertainty in reading the level 
is ±O· 5 dB. The error in the time scale is of the order of ±3 in 103, so that the overall 
uncertainty in measuring D is of the order of ±1 in 102• The upper practical limit 
for the direct measurement of D on the level recorder is determined by the fastest 
paper speed available, which sets the limit at approximately 570 dBls (corresponding 
to a bandwidth of 21 Hz). 

For highly damped materials, it is necessary to make a direct determination 
of the bandwidth. The main source of error is now the uncertainty in determining 
the points on the resonant curve for which the displacement is 1/y'2 times the 
maximum displacement (corresponding to a reduction in signal level of 3 dB). 
Using an input potentiometer with a 10 dB range, the estimated error in determining 
these points is ±10%. In addition, the uncertainty in measuring a frequency 
difference using the smallest bandwidth of the wave analyser is ±1 Hz. Thus for, 
bandwidths of the order of 20 Hz, the overall error may be as high as ±15%. As the 
bandwidth increases, the precision of measurement improves. 

The effect of absorption on the measured values of phase velocity and elastic 
moduli is considered in Appendix II. 

(e) Mode Parameters 

To complete the description of each normal mode of the specimen, the mode 
parameters may be computed (Skudrzyk 1958) from the measured values of resonant 
frequency and damping. The required relationships are summarized in Appendix III. 
The mode parameters are required for the computation of the mode impedance, 
given by equation (7) and for the velocity or displacement amplitude (equations (9) 
and (10)). 

VI. CONOLUSIONS 

The computation of the response of a linear mechanical system to impulse 
excitation is considerably simplified if the impulse may be treated as a delta function. 
Application of Fourier analysis allows the frequency spectrum to be evaluated. 
In the case of a finite elastic rod, a further simplification arises from consideration 
of the normal modes of the rod. 

An impulse spectrometer has been devised in which the specimen is excited 
by the impact of a small steel ball. Following detection using a capacitative 
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transducer, the signal is examined by means of a wave analyser and level recorder. 
Longitudinal, torsional, and flexural waves may readily be generated and detected. 
From the measured dimensions and resonant frequencies, the appropriate wave 
velocities and elastic moduli may be computed. 

It is suggested that, in order to determine the dynamic elastic moduli with 
maximum accuracy, measurements should be made at one or more of the higher 
harmonics. With a high harmonic, a large number of nodes and loops are introduced 
into the specimen. When anisotropy is present, as occurs with drawn metals and 
alloys, the measured modulus thus represents an average value taken over all the 
loops present in the specimen. 

The strain level, which depends on the momentum imparted to the specimen, 
is controllable and may be varied from approximately 10-7 to 10-5 with the present 
arrangement. One of the main advantages of the impulse method is the ease with 
which the decay rate for free vibrations of a normal mode may be measured. 
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APPENDIX I 

Damping Measures 

The most basic measures are those that involve only energy changes and 
hence do not depend on a knowledge of the detailed mechanism by which the energy 
is dissipated. The internal friction, LlW/W, is the ratio of LlW, the energy dissipated 
per unit volume when the specimen is taken through a stress cycle, to W, the elastic 
energy per unit volume stored in the specimen when the strain is a maximum. 
As shown in standard texts (e.g. Morse 1948), 

LlW/W = 27T/Q = 2m}, (AI) 

where Q is the quality factor and 7J is the loss factor or dissipation function. 

22 H. F. POLLARD 

transducer, the signal is examined by means of a wave analyser and level recorder. 
Longitudinal, torsional, and flexural waves may readily be generated and detected. 
From the measured dimensions and resonant frequencies, the appropriate wave 
velocities and elastic moduli may be computed. 

It is suggested that, in order to determine the dynamic elastic moduli with 
maximum accuracy, measurements should be made at one or more of the higher 
harmonics. With a high harmonic, a large number of nodes and loops are introduced 
into the specimen. When anisotropy is present, as occurs with drawn metals and 
alloys, the measured modulus thus represents an average value taken over all the 
loops present in the specimen. 

The strain level, which depends on the momentum imparted to the specimen, 
is controllable and may be varied from approximately 10-7 to 10-0 with the present 
arrangement. One of the main advantages of the impulse method is the ease with 
which the decay rate for free vibrations of a normal mode may be measured. 

VII. ACKNOWLEDGMENTS 

Gratitude is expressed to the Australian Atomic Energy Commission for 
supporting this work as part of a research contract; to the Austral Bronze Co. 
Pty. Ltd. for the donation of specimens; to Professor C. J. Milner, Head of the 
School of Physics, for encouraging this research; to R. W. Harris for helpful 
discussions; and to A. Parts for assistance in designing and constructing apparatus. 

VIII. REFERENCES 

BANCROFT, D. (1941).-Phys. Rev. 59: 588. 
BRADFIELD, G., and PURSEY, H. (1953).-Phil. Mag. 44: 437. 
LANCZOS, C. (l957).-"Applied Analysis." (Pitman: London.) 
LANDAU, L. D., and LIFSHITZ, E. M. (1959).-"Theory of Elasticity." (Pergamon: London.) 
MCMILLEN, J. H. (1946).-J. Acoust. Soc. Amer. 18: 190. 
MASON, W. P. (1958).--"Physical Acoustics and the Properties of Solids." (Van Nostrand: 

New York.) 
MORSE, P. M. (1948).-"Vibration and Sound." (McGraw·Hill: New York.) 
POLLARD, H. F. (1962a).-Acustica 12: 291. 
POLLARD, H. F. (1962b).-Aust. J. Phys. 15: 513. 
RAYLEIGH, LORD (1894).-"Theory of Sound." (Macmillan: London.) 
RICHARDSON, E. G. (1954).-Acustica 4: 537. 
SXUDRZYX, E. J. (1958).-J. Acoust. Soc. Amer. 30: 1140. 

ApPENDIX I 

Damping Measures 

The most basic measures are those that involve only energy changes and 
hence do not depend on a knowledge of the detailed mechanism by which the energy 
is dissipated. The internal friction, Ll W/W, is the ratio of Ll W, the energy dissipated 
per unit volume when the specimen is taken through a stress cycle, to W, the elastic 
energy per unit volume stored in the specimen when the strain is a maximum. 
As shown in standard texts (e.g. Morse 1948), 

LlW/W = 27T/Q = 2m7, (AI) 

where Q is the quality factor and 7J is the loss factor or dissipation function. 



DYNAMIC ELASTIC MODULI 23 

Equation (AI) may also be written 

71 = Ti.lS/21TW, (A2) 

where T is the absolute temperature and i.lS is the irreversible entropy generated 
per unit volume per stress cycle. 

Other measures depend on the postulated mechanism causing loss of energy. 
The simplest system possessing an exponential decay of energy is the free linear 
oscillator with resistance proportional to velocity, for which the equation of motion is 

mii+Rs+s/C = 0, (A3) 

where m is the mass, R is the mechanical resistance, C is the mechanical compliance, 
and s the displacement. The solution for the decay of amplitude is 

8 = 80 exp( -ot), 

and for the decay of the stored energy 

W = Wo exp( -20t). 

The damping coefficient 0 is given by 

0= R/2m. 

(A4) 

(A5) 

(A6) 

Equation (A5) may be written in terms of energy levels with the decibel as unit 

L = Lo-Dt, (A7) 

where Land Lo are the final and initial energy levels respectively. D is the decay 
rate and is related to 0 by 

D = S·6S8. (AS) 

The logarithmic decrement A is defined as the natural logarithm of the ratios of 
the values of s at two times differing by one period. Thus, 

A = 8T = 1T7J, (A9) 

since the quality factor, Q = 1/71, for a linear oscillator is defined as Q = wm/R. 
The internal friction for the linear oscillator maype shown to be given by 

i.lW/W ~ 28T = 21T7J. (AlO) 

It is also useful to relate Q and 71 to D, whence 

Q = 1Tv/8 = 27· 28v/D. (All) 

In terms of the bandwidth i.lv of a resonant curve with centre frequency v, Q = v/i.lv 
and 

i.lv = D/27·28. (AI2) 

Finally, the spatial attenuation coefficient a for a travelling wave is related to 0, 71, 
and D by 

a = o/e = w7J/2e = 0·1l52D/e, 

where e is the phase velocity of the wave. 

(A13) 

DYNAMIC ELASTIC MODULI 23 

Equation (AI) may also be written 

TJ = Ti.lSj21TW, (A2) 

where T is the absolute temperature and i.lS is the irreversible entropy generated 
per unit volume per stress cycle. 

Other measures depend on the postulated mechanism causing loss of energy. 
The simplest system possessing an exponential decay of energy is the free linear 
oscillator with resistance proportional to velocity, for which the equation of motion is 

rn8+Rs+sjC = 0, (A3) 

where m is the mass, R is the mechanical resistance, C is the mechanical compliance, 
and s the displacement. The solution for the decay of amplitude is 

s = So exp( -ot), 

and for the decay of the stored energy 

W = Wo exp( -20t). 

The damping coefficient 0 is given by 

0= Rj2m. 

(A4) 

(A5) 

(A6) 

Equation (A5) may be written in terms of energy levels with the decibel as unit 

L = Lo-Dt, (A7) 

where Land Lo are the final and initial energy levels respectively. D is the decay 
rate and is related to 0 by 

D = 8·680. (A8) 

The logarithmic decrement A is defined as the natural logarithm of the ratios of 
the values of s at two times differing by one period. Thus, 

A = oT = 1TTJ, (A9) 

since the quality factor, Q = Ih, for a linear oscillator is defined as Q = wmjR. 
The internal friction for the linear oscillator may pe shown to be given by 

i.lWjW ~ 20T = 21T7J. (AlO) 

It is also useful to relate Q and TJ to D, whence 

Q = 1TVjO = 27· 28vjD. (All) 

In terms of the bandwidth i.lv of a resonant curve with centre frequency v, Q = vji.lv 
and 

i.lv = Dj27' 28. (AI2) 

Finally, the spatial attenuation coefficient a for a travelling wave is related to 0, TJ, 
and D by 

a = oje = wTJj2e = 0'1l52Dje, 

where e is the phase velocity of the wave. 

(AI3) 
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APPENDIX II 

Effect of Absorption on Phase Velocity and Elastic Moduli 

When a plane wave travels along an isotropic cylindrical rod in the +x 
direction and allowance is made for the attenuation of the wave as it progresses, 
a solution of the wave equation in terms of displacement may be written 

s", = A exp i(wt-kx), (B1) 

where s'" is the complex displacement, A the complex amplitude, w the angular 
frequency, and k the complex wave vector. k may be written as k = k-ia where 
k = w/c, c is the phase velocity of the wave, and a is the attenuation coefficient. 

In order to take into account the effects of attenuation, the phase velocity 
may be regarded as being complex, so that 

e = w/k = w/(k-ia). (B2) 

Provided a 2 can be ignored compared with k2 , it may be shown that 

e = (w/k)(l-ia/k) = c(1-i1/2Q), (B3) 

since a = w/2cQ = k/2Q. Hence, to make a change in lei of 1 part of 104, Q must 
be R::i 35; for a change of 1 part in 103, Q must be R::i 10 and for a change of 1 %, Q must 
be R::i 3·5. Absorption therefore does not seriously affect the phase velocity except 
for highly absorbing materials. 

The effect of absorption on the elastic modulus is somewhat more marked. 
Taking the case of plane longitudinal waves, Young's modulus may now be regarded 
as being complex: 

E = pel = E(l-i/Q). (B4) 

For the absorption to make a 1 % change in lEI, Q must be R::i 70. For a 0·1 % 
change in lEI, Q must be R::i 225. Similar considerations apply to the shear modulus. 

ApPENDIX III 

Mode Parameters 

For the longitudinal resonant modes of a rod, with driver and receiver at 
opposite ends of the specimen 

Mn = i'M, 

} Rn = wnMn'Y}n, (01) 

Cn = l/w~Mn> 
where M is the total mass, Mn> Rn, and Cn are the effective mass, resistance, and 
compliance respectively of the system for the nth normal mode. In addition, the 
characteristic impedance Zo of the medium is given by 

Zo = pCLA , (02) 

where A is the area of cross section. 
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When a plane wave travels along an isotropic cylindrical rod in the +x 
direction and allowance is made for the attenuation of the wave as it progresses, 
a solution of the wave equation in terms of displacement may be written 

SOl = A exp i(wt-kx), (Bl) 

where SOl is the complex displacement, A the complex amplitude, w the angular 
frequency, and k the complex wave vector. k may be written as k = k-ia where 
k = wlc, c is the phase velocity of the wave, and a is the attenuation coefficient. 

In order to take into account the effects of attenuation, the phase velocity 
may be regarded as being complex, so that 
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Provided a2 can be ignored compared with k 2 , it may be shown that 

e = (wjk)(l-iajk) = c(1-ilj2Q), (B3) 

since a = wj2cQ = kj2Q. Hence, to make a change in lei of 1 part of 104, Q must 
be R:; 35; for a change of 1 part in 103, Q must be R:; 10 and for a change of 1 %, Q must 
be R:; 3· 5. Absorption therefore does not seriously affect the phase velocity except 
for highly absorbing materials. 

The effect of absorption on the elastic modulus is somewhat more marked. 
Taking the case of plane longitudinal waves, Young's modulus may now be regarded 
as being complex: 

E = pel = E(l-ijQ). (B4) 

For the absorption to make a 1 % change in lEI, Q must be R:; 70. For a 0·1 % 
change in lEI, Q must be R:; 225. Similar considerations apply to the shear modulus. 

ApPENDIX III 

Mode Parameters 

For the longitudinal resonant modes of a rod, with driver and receiver at 
opposite ends of the specimen 

Mn = i'M, 

} Rn = wnM nYJno (Cl) 

Cn = Ijw~Mn' 
where M is the total mass, Mno Rn> and Cn are the effective mass, resistance, and 
compliance respectively of the system for the nth normal mode. In addition, the 
characteristic impedance Zo of the medium is given by 

(C2) 

where A is the area of cross section. 
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For torsional waves in a rod, the corresponding parameters are 

In = F, 

} Rn = wnInTJn, (03) 

On = l/w;'In, 

where I is the moment of inertia about the axis of the rod and On = (J /T is an angular 
compliance, (J is the angular displacement, T is the torque. The characteristic 
impedance in this case is 

Zo = pCTA. (04) 

For flexural waves in a rod, the mode parameters are given by expressions 
similar to those in equations (01) for the longitudinal mode. However, the character
istic impedance is different, namely, 

Zo = {(I +i)/l}(wncFK)tM, (05) 

where CF is the flexural wave velocity and K is the radius of gyration of cross section 
about an axis perpendicular to the displacement. 

As an illustration of the above relationships, the following parameters have 
been computed for the first longitudinal and first torsional mode of alloy 305 (see 
Table 1): 

Longitudinal mode: VI = 1994 Hz, 
Ml = 0·229 kg, 
01 = 27'8xl0-9 miN. 

Torsional mode: VI = 1516 Hz, 
II = 5'30xl0-6 kg m 2, 

01 =20·8xl0-4 N-l. 

TJl = 8· 40 X 10-5, 

Rl = 0·241 ohm, 

TJl = 5· 24 X 10-5, 

Rl = 0·264 X 10-6 ohm, 
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