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Summary 

When a heat exchanger operates on fixed hot and cold fluid streams and is 
adjusted to give optimum efficiency, the measure of irreversibility produced by the 
exchange process is a sum of two terms, one of which is proportional to the pivotal 
temperature difference and the other to the terminal temperature difference. 

I. INTRODUCTION 

In the preceding paper, the authors (Bosworth and Groden 1964, hereafter 
referred to as paper I) discussed the value of Keenan's (1951) availability in considering 
the Kelvin efficiency of countercurrent heat exchangers and have derived a number 
of thermodynamical properties of such interacting systems measured at the so-called 
pivotal temperature of the exchanger or at the point at which the temperature 
difference becomes stationary. It is the aim of the present paper to devise an expression 
for the optimum attainable efficiency, subject to the fixed properties of the interacting 
fluids, and, for that purpose, it will first be necessary to find conditions for the 
stationary value of a quantity closely related to the efficiency and which may be 
expressed as a function of stream variables, which in this case are the stream flow rates. 

II. THE IRREVERSIBILITY 

The quantity most suitable for this purpose is the irreversibility, which has been 
given a definite metrical significance by Keenan (1932) and used extensively by 
Brnges (1959). The irreversibility ll.I, measured in units of energy, is the product of 
the sink temperature by the entropy increment due to irreversible change (ll.Slrr). 
In the system considered above, ll.Slrr = ll.S2-ll.S1' where ll.Sl is the entropy decrease 
of the donor system and ll.Sa the corresponding entropy increase of the acceptor system, 
so that the net irreversibility M becomes 

ll.I = T oll.Slrr 

= T O(ll.S2-ll.S1) , (1) 

with To the sink temperature assumed constant while the irreversibility entropy is 
passed to it. The total irreversibility I is then 

1= f To dB 

taken over the adiabatic path so that dB refers only to the internal entropy equation. 
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If the entropies in equation (1) are total entropies, the quantity !J.I is the 
measure of the net irreversibility. If, as is usual in engineering practice, the !J.B's 
are specific entropies, !J.I becomes a specific irreversibility measured in units of energy 
per unit mass,· but if the !J.B's, as it is the common practice in chemical applications, 
are molar entropies, !J.I becomes a molar irreversibility measured in units of energy 
per mole. 

For an inexhaustible sink at a temperature To, the admission at pressure p and 
temperature T of an element of enthalpy dH gives rise to the development of 
irreversibility dI, 

dI = To dB, 

and if dB = dB -To dB, where B is "availability" (see paper I), 

then 

dI = dH-dB, 

and on integration 

!J.I = !J.H -!J.B 

for a finite temperature change of the source. 

(2) 

For an exhaustible source, the admission of enthalpy dH takes place at a 
temperature T and a sink temperature To+aT, a linear function of T, where a 
is the ratio of the water equivalents of the source and the sink and may be either 
positive or negative. The increment of irreversibility then becomes 

!J.I = f (To+aT) a.:, 
!J.I = (1 +a)!J.H -!J.B, (3) 

There are equivalent expressions for the measured irreversibility in flow and no
flow systems given in Bruges (Chapter 4, loco cit.). 

In each case, however, miriimum values of the irreversibility change at constant 
enthalpy change are associated with maximum values in the availability change. 
The performance of heat exchangers, treated largely qualitatively by Bruges 
(Chapter 6, loco cit.), is considered in terms of what is called the "effectiveness" of 
the exchange process. Effectiveness in this content is defined by 

Effectiveness = !J.B2/!J.B1, 

and approaches unity when the availability ratio of the donor stream tends to that 
of the acceptor stream. Effectiveness thus takes a maximum value when irreversibility 
takes a minimum value. 

III. PROPERTIES OF A COUNTERCURRENT EXCHANGER 

Paper I discussed the thermodynamical properties of two systems, one, the 
donor stream, entering at a temperature Too and leaving at a temperature To+llo 
at a rate gl units of mass per unit time and having a specific heat c1 which was a 
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function of stream temperature (T+O). The second, or acceptor stream entered at 
a lower temperature To and left at a temperature T a>-Oa>' The flow rate of this 
stream was g2 units of mass per unit time and had a specific heat C2 which was a function 
of the stream temperature T. The temperature difference 0 (greater than zero) 
between the streams could pass one or more stationary values 0* at a lower stream 
temperature T*, the so-called pivotal temperature. Paper I showed that 

g2 C; Mil f1H; 
gl = C; = f1H2 = f1H;' (4) 

where 

C; = specific heat of the upper stream at temperature (T* +0*) ; 

c; = specific heat of the lower stream at temperature T*; 

fTa> 

f1HI = Ctd(T+O) = total specific enthalpy change ofthe upper stream; 
T.+8. 

2'*+8-

f1H: = f Ctd(T+O) = specific enthalpy change of upper stream in 
T.+8. passing from the sink temperature to the pivotal 

temperature. 

f1H 2 and MI; were the corresponding enthalpy changes for the lower stream. 

and 

It was also found that 

0= g2 fT ~ dT-T+Y* ;;;;. 0, 
gl 2'* CI 

g fY Ct 0= Y -T*-...l - dY ;;;;. 0, 
g2 Y- C2 

(5) 

(6) 

with Y (= T +0) and y* (= T* +0*) representing temperatures in the upper stream. 

Now, if we set the upper limits at the sink temperature, equations (5) and (6) 
yield respectively 

fTO 
00 = g2 ~ dT-To+Y*, 

gl T- CI 
(7) 

and 

0= To-T*-'h. ~ dY. fY • 

g2 Y· C2 
(8) 

If a total enthalpy element gl dHl is lost in unit time from the upper stream at a 
temperature Y(= T+O), then the total enthalpy gain per unit time by the cooler 
stream at a temperature T amounts to g2 dH 2; the irreversibility element dJ produced 
in unit time is therefore 

( dHg dHI ), dJ = T gg P-gl T+O 

where the gl and g2 are the mass velocities of the stream. 
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The total irreversibility per unit mass of the upper stream then becomes 

I = ~ f dJ = g2 f T
",-8", dH2 dT- fT'" !., dHl dY 

gl gl To dT To+B. Y dY 

= ~ !J.H2 -!J.HI + fT", ~ dHI dY. 
gl T.+8. Y dY 

In view of (4), the first two terms are equal and 

fT", () 

I = Y CI dY. 
T.+8. 

(9) 

IV. OPTIMUM CONDITIONS FOR OPERATION 

To find the optimum ('onditions for operation, it is necessary to substitute for 
the () in equation (9) and to find the value of gl/g2 (the only independent variable left 
in the system) which makes the value of I a minimum. Two values of () may be 
used: that in equation (5) and that in (6). The former gives 

I=g2fT", ~{fT ~dT}dY-fT'" :£Cldy+y*fT", ~dY; 
gl To+8o Y T* CI To+8o Y T.+8o Y 

the second term becomes the difference between the specific enthalpy and the irre
versibility of the upper stream and the last integral becomes the specific entropy of 
the upper stream; hence 

0= g2 fT", ~ {fT c2 dT} dY -!J.HI+Y* !J.Sv 
gl To+8. Y T* ci 

(10) 

where 

!J.SI = dHl fT", 

T.+8. Y· 

Substitution of equation (6) in equation (9) likewise gives 

I = !J.HI-T* !J.SI - gi fT", CII { f Y' ~1 dY} dYl. 
g2 T.+8. Y Y* C2 

(11) 

For the optimum conditions of heat exchange, the irreversibility I must be a 
minimum. To achieve this, we shall now differentiate equations (10) and (ll) with 
respect to gl' keeping g2 constant. Putting (oI/ogl)g, = 0, and recalling the facts 
that ()o, T*, and () but not 8* are functions of the g's, we first obtain from (10) 

_y* o!J.SI_!J.SI oT* +o!J.HI = _g~ fT", ~ { fT ~ dT} dY 
Ogl Ogl Ogl gl Y. Y T* CI 

+~~ ~ ~dT dY :::l [fT'" { fT }] 
gl Ogl To+8.(g,) Y T*(g,) ci ' 

where Yo = To+()o, 
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or, using equations (7), (10), and the definitions of !J.HI and !J.SI , we find that 

!J.HI = Y*!J.SI, 

41 

(12) 

which gives a measure of the pivotal temperature. Corresponding differentiation of 
equation (11) yields for oI/ogl = 0 the minimum value Imin. as 

00 (000 ) I min. = !J.HI-T*!J.SI +gICI •O Yo Ogl g: (13) 

or, in view of (12), 

00 (00°) I min. = O*!J.SI +glCl,O Yo Ogl g,' (14) 

where c1.0 is the specific heat of the upper stream at the temperature Yo' A definite 
value can be given to equation (14) for the minimum irreversibility and thus for the 
maximum effectiveness of the exchange process once a definite value of (OOO/Ogl)g, 
is assigned. 

For this purpose, we use equation (4) and differentiate with respect to gl' keeping 
g2 constant. We have 

00 (gl!J.H;) = -::>0 (g2!J.H;) , 
gl ugl 

giving 

(000 ) = !J.H;. 
gICI •O Ogl g, 

Substitution of equation (15) into (14) finally gives 

I min. = 8* !J.SI + T 8+0 8 !J.H; , 
o 0 

(15) 

(16) 

and the minimum irreversibility is the sum of two contributions, one coming from the 
pivotal temperature difference and one from the initial temperature difference. 

V. AN EXAMPLE WITHOUT ANY PHASE CHANGE 

As a simple example, consider the case in which both streams have isopiestic 
heat capacities which are linear in temperature throughout the range of the exchanger: 

CI = clO {1+a(Y -Yo)}, 

c2 = c20 {1+b(T-To)}, 

where a and b are small in comparison with the reciprocal of T. 

Omitting powers and products of the small temperature differences (80, 8*, ( 00 ) 

and of the temperature coefficients a and b we get 

!J.HI = CIO (T oo-To-Oo)+!a(T 00-TO)2, 

!J.H2 = C20 (T oo-To-(00)+tb(T 00-TO)2, 

!J.H; = cIO (T*-To+8*-Oo)+!a(T*-To)2, 
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fl.H; = C20 (T*-TO}+ib(T*-TO}2, 

fl.S1 = C10 (l-aTO) In{Too/(T+Bo)}+a(Too-To}· 

From fl.H;/fl.H; = c;/c; = fl.Hl/fl.H2 we get 

B*-Bo = i(a-b)(T*-To}2, (17) 
and 

Boo-Bo = i(b-a)(T oo-To)(T 00+To-2T*}. (18) 

The value of T* for this'system may be obtained from equation (12) as 

T*+B* = (T oo-To-Bo}+ia(T 00- TO}2 
In(T oo/To}-Bo/To+a{T oo-To-To In(T oo/To)} 

Too-To ( Bo) ~,. , } 1+2To ' (19) 

or the pivotal temperature is slightly greater than the logarithmic mean temperature 
of the system, provided Bo has a finite value >0. 

The attainable value of B* depends on the relative values of a and b. The value 
of B attains a minimum which may be allowed to vanish at T = T* when the inequality 
b>a holds. 

Equations (17}-(19) then become 

Therefore 

Bo = i(b-a)(T*-To}2 

~ Mb-a)(T 00-TO}2, 

Boo = i(b-a)(T oo -T*}2 

~ Mb-a)(T oo-_TO}2. 

Bo = Boo, 

T* = (Too-To) [1 + -k(b-a)(T 00-TO}2] 
In(T oo/To} To . 

The minimum obtainable irreversibility per unit mass then becomes 

I min. = T B+o B fl.H~ 
o 0 

~ -kc1o(b-a)(T 00- T O}3/To, (20) 

which accordingly vanishes only when b = a, i.e. when the two interacting streams 
have specific heats with the same logarithmic temperature coefficients, or alternatively, 
when the overall temperature difference across the exchanger (T 00 - To) is vanishingly 
small. 

Take now the opposite case in which 

a> b. 
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The 8 versus T curve then gives a maximum value 8* at the pivotal temperature T*. 
Optimum efficiency then demands that either 80 or 800 should vanish. Detailed working 
shows that, in all normal cases in which a and b are small in comparison with the 
reciprocal of the temperature, the maximum efficiency is obtained when 800 vanishes. 
Under these conditions equations (17)-(19) give 

80 = i(a-b)2(T 00-TO)3,t 

8* = i(a-b)(Too-To)2, 

T * - Too-To .l( -b)(T -T )2. 
- In(T oo/To) 8 a 00 0' 

in which now T* is slightly less than the logarithmic mean of T and To. 

From these figures, the minimum irreversibility per unit mass may be derived: 
from equation (16) 

Imin. = 8* M 1+T 8+0 8 AH~, 
o 0 

and, since the second term is negligible in comparison with the first one, we have 

Imin. ~ lclo(a-b)(T 00- T O)2ln(T oo/To) 

~ icIo(a-b) (Too _TO)3/(T 00 + To), (20a) 

which is always positive and tends to zero only when a-+b or To---+T 00, namely, when 
the temperature coefficients of the two streams take the same value or when the 
overall temperature difference (T 00 - To) is an infinitesimal quantity. 

To gain perhaps a clearer interpretation of the meaning of the finite positive 
irreversibilities in heat exchange processes let us allow a gas A (with logarithmic 
temperature coefficient of heat capacity as a) interact with a different gas B with a 
corresponding property b. Later let the heater gas B interact in another heat 
exchanger with a different sample of gas A. Then, no matter how efficient the exchange 
processes may be made, the second sample of gas A will never be heated to the input 
temperature of the first sample of gas A and will, in fact, always be cooler by at least 
i(b-a)(T 00-'--TO)2, while the maximum discharge temperature of the first sample 
must exceed the source temperature of the second sample by at least a like amount. 

VI. EXAMPLES WITH PHASE CHANGES 

In any examples in which first-order changes in phase occur, discontinuities 
appear in the specific heat curves. As discussed in paper I this means that the ratio 
c~/c; passes through a wide range at a steady value of T or (T +8) depending on 
whether the upper or lower stream is subject to a phase change. Consequently, 
provided only the enthalpy change associated with the phase change is not trivial in 
comparison with the total enthalpy change in the exchanger, the pivotal temperature 
T* is equal to the temperature of the phase change, say T b. and completely inde
pendent of the flow rate. 

t A small quantity of a lower order than that of 8*. 
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From these figures, the minimum irreversibility per unit mass may be derived: 
from equation (16) 

Imin. = 8* M 1+T 8+0 8 AH~, 
o 0 

and, since the second term is negligible in comparison with the first one, we have 

Imin. ~ lclo(a-b)(T 00- T O)2ln(T oo/To) 

~ icIo(a-b) (Too _TO)3/(T 00 + To), (20a) 

which is always positive and tends to zero only when a-+b or To---+T 00, namely, when 
the temperature coefficients of the two streams take the same value or when the 
overall temperature difference (T 00 - To) is an infinitesimal quantity. 

To gain perhaps a clearer interpretation of the meaning of the finite positive 
irreversibilities in heat exchange processes let us allow a gas A (with logarithmic 
temperature coefficient of heat capacity as a) interact with a different gas B with a 
corresponding property b. Later let the heater gas B interact in another heat 
exchanger with a different sample of gas A. Then, no matter how efficient the exchange 
processes may be made, the second sample of gas A will never be heated to the input 
temperature of the first sample of gas A and will, in fact, always be cooler by at least 
i(b-a)(T 00-'--TO)2, while the maximum discharge temperature of the first sample 
must exceed the source temperature of the second sample by at least a like amount. 

VI. EXAMPLES WITH PHASE CHANGES 

In any examples in which first-order changes in phase occur, discontinuities 
appear in the specific heat curves. As discussed in paper I this means that the ratio 
c~/c; passes through a wide range at a steady value of T or (T +8) depending on 
whether the upper or lower stream is subject to a phase change. Consequently, 
provided only the enthalpy change associated with the phase change is not trivial in 
comparison with the total enthalpy change in the exchanger, the pivotal temperature 
T* is equal to the temperature of the phase change, say T b. and completely inde
pendent of the flow rate. 

t A small quantity of a lower order than that of 8*. 
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The measure of the minimal irreversibility is accordingly given by 

I min. = T 0+0 0 D..H~, 
o 0 

(21) 

as, for reasons advanced in paper I, 0* in these examples can be made to vanish. 

Suppose now we take a simple example in which the upper stream enters as a 
vapour at Too having a constant specific heat C1 and let the vapour condense at 
Tb and be discharged mainly as liquid at the temperature T b. Let L be the latent 
heat of condensation at T = T b • 

Let the lower stream enter at To < Tb and let this stream have a constant 
specific heat C2• Then the appropriate functions for calculating the minimal 
irreversibility are as follows: 

D..H~ = L, 

D..Hl = L+c1(T oo-Tb), 

D..S1 = L/Tb+c1ln(T oo/Tb), 

D..H2 = c2(T oo-Ooo-To), 

D..H; = c2(T b-To), 

00 = Tb-TO' 

Equation (21) now' reduces to 

I min. = (1-To/Tb) D..H;, 

while the heat balance condition gives 

1 +c1(T oo-Tb)/L = (T oo-Ooo-To)/(Tb-TO), 
or 

000 = T oo-Tb-(c1/L)(T oo-Tb)(Tb-TO), 

(22) 

(23) 

which now may be used to express 000 in terms of the terminal temperature and the 
transition temperature. This means that, if we wish to remove, under optimum 
conditions, all the heat of transition, then there is a prescribed low temperature To 
for any entrance high temperature Too, the relative flow rates of the stream being 
prescribed by the requirements for optimum thermal efficiency. 
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