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Summary 

Complex singularities in the 7T+N --+ 7T+ 7T+N amplitude corresponding to 
vertex contractions of the single-loop Feynman diagram exist on the physical sheet 
of the amplitude irrespective of whether the theory is formulated in terms of time
ordered or retarded products. 

1. INTRODUCTION 

The amplitude studied in lowest-order perturbation theory which describes the 
inelastic scattering of a pion on a nucleon is usually the Fourier transform of a 
time-ordered (T) product: 
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The four momenta of the incoming nucleon and pion are p and k, while those 
of the outgoing nucleon and pions are p', k', and k". The quantities p,i are the masses 
of the intermediate particles. 

Now in field theory the equation (1.1) can be written in terms of a retarded 
(R) product rather than a T product. This involves changing the signs of the imaginary 
parts of the denominators in a well-defined way. The question thus arises whether or 
not the definition of the Feynman function is thereby altered-in the physical 
scattering regions the Rand T product formulations are identical, but what is 
important is whether or not we are dealing in both cases with the same sheet of the 
amplitude. A change in the sign of the imaginary parts may alter the prescription of 
how we must thread our way round the branch points to reach the physical sheet. 

Various authors (Kim 1961; Landshoff and Treiman 1961; Cunningham 1962) 
have shown, using a variety of different variables, that in the single-loop graph for 
the process 7T+N ~ 7T+7T+N complex. singularities always exist on the physical 
sheet due to complex singularities of certain contracted diagrams of the vertex type. 
All these authors have, however, made assumptions: (1) that the physical singularities 
arising from various contracted diagrams are the physical singularities which one 
would obtain by treating each contracted graph as if it were itself a leading graph, (2) 
that the theory has been formulated in terms of T products. 

We shall show that assumption (1) is justified and that assumption (2) need 
not be made in this particular example. 
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II. CONTRACTED DIAGRAMS 

The physical singularities of any given graph occur as physical singularities in 
all higher graphs which possess this graph as a contraction. Such an assumption is 
implicit in the inductive arguments which support the Mandelstam representation 
(Eden et al. 1961a, 1961b; Landshoff, Polkinghorne, and Taylor 1961). 

Let the amplitude considered be an integral of the structure 

I = J: !(q,z)g(q,z) dq, (2.1) 

where z summarizes the variables which describe the scattering process and q repre
sents the integration variables. 

Suppose that we are interested in the contraction which, when treated in its 
own right as a leading curve, has the form 

Ie = J: !(q,z) dq. (2.2) 

Integrate by parts: 

I = [F(B,z)g(B,z)-F(A,z)g(A,z)]-J: F(q,z)g'(q,z) dq, (2.3) 

where 

F(q,z) = f !(q,z) dq. 

Equation (2.3) will remain valid, as we vary z, so long as each term remains an 
analytic function of z. 

I possesses singularities of five types: 

(a) end point singularities of!, 
(b) end point singularities of g, 

(c) pinch singularities of!, 
(d) pinch singularities of g, 

(e) singularities due to both! and g. 

The first term on the right-hand side of equation (2.3) possesses branch points 
of the types (a) and (c) only (also poles corresponding to branch points of I of the 
type (b)); the second term contains all types of singularity listed above. 

Now, if we wish to continue equation (2.3) from a region where both sides are 
regular to a point suspected of being a singularity of type (a) or type (c), deformations 
of the path are necessary to avoid encountering other types of singularity. The 
definition of the physical sheet prescribes the way in which the higher order branch 
cuts must be threaded. Such deformations are irrelevant in the case of the first term 
on the right-hand side because any two paths can be deformed into one another 
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without crossing a singularity of the type (b), (d), or (e). Thus, in general, .the left-hand 
integral possesses the singularities of the first term on the right-hand side-and this 
term may be treated as if singularities other than those of Ie did not exist. 

This proves the stated result. 

III. REAL CONTINUATIONS 

Let us consider an amplitude F(z) which has been transformed, in the usual 
fashion, to give a multiple integral of a denominator function D(a,z) over a set of 
Feynman parameters at. Let us continue F(z) from a region of the real z-plane where 
the denominator D does not vanish for at real; then we need not deform our original 
contours, provided our path in the z-plane is real, until we first encounter a Landau 
curve which corresponds to at values lying between zero and unity. Furthermore, 
F(z) must be singular at this point irrespective of the signs of i€ in the denominator. 

Consider the denominator D(a,z): with z real, the zeros of D(a,z) are necessarily 
real or occur in complex conjugate pairs. Let us suppose that we are performing the 
al integration. If, as we vary z through real values, the denominator, which has been 
non-zero on our contours of integration, suddenly vanishes, one of two things must 
have occurred: either (1) a real zero of D has collided with the end point al = 0, 
i.e. D(O, a2, a3, ... , an, z) = 0, or (2) a complex conjugate pair of zeros has pinched 
the undeformed al contour, i.e. ?JDj?Jal = 0; in both cases (1) and (2) we insist that 
o ~ ai :::;;; 1 because we have not deformed our contours. Now, if, when D first 
vanished, we had been considering the ar integration we should have concluded that 
either (1) D(al' ... , ar-I, 0, ar+l, ... an, z) = 0 or (2) ?JDj?Jar = 0 for 0 :::;;; ac :::;;; 1. 
Thus, as we vary z in the real plane, when we first reach a point where the denominator 
vanishes in the region of integration 0 :::;;; ai ~ 1, it is evident that we have encountered 
a Landau curve whereon 0 :::;;; at :::;;; 1, since a Landau curve is a locus ai()Dj()ai = 0 
for all i = 1, 2, ... , n. 

This proves the first part of the theorem. 

Suppose that the above situation arises for z = z corresponding to the value 
a = a where 0 ~ ai ~ 1. Then, when we look at the al integration, either we have 
an end point al = 0, or a complex conjugate pair of aI's pinch the contour. When 
we proceed to the a2 integration the critical value ofal is al, so that we wish to examine 
the a2 integration with al fixed at the real value al; in this way it is clear that either 
a2 = 0 or a complex conjugate pair of a2's has pinched the a2 contour. So proceeding, 
we see that each integration has either an end point or pinch configuration of the 
zeros of D: thus we conclude that F(z) is singular at z = z. 

It is vital to realize that this result applies only to the first singularity encount
ered, because, to reach a second singularity, contour deformation may be required 
and the above argument will fail to hold. It is only the first singularity for which 
the ai necessarily lie in the range 0 ~ at ~ 1. 

IV. CONCLUSION 

The vertex contractions of the five-point single loop which give rise to the 
complex singularities referred to in (1) can be reached in the fashion described in (III). 
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Thus we conclude that the complex singularities are present regardless of the type 
of product which has been used to formulate the theory. 
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