THE EVOLUTION OF MASSIVE STARS INITIALLY COMPOSED OF PURE HYDROGEN

By R. Van der Borght*

[Manuscript received August 22, 1963]

Summary

Abstract

The object of the present paper is to investigate the influence of carbon abundance on the evolution of the massive stars, initially composed of pure hydrogen, during the pre-main-sequence contraction and the hydrogen burning phase of these stars.

I. Introduction

Equilibrium models of stars composed of pure hydrogen have been considered by Boury (1960) and Ezer (1961) and, as pointed out by these authors, it is to be expected that a certain amount of carbon will be formed in the star during its pre-main-sequence contraction and that, at some time during the evolution of the star, the carbon cycle will become the predominant factor in the nuclear energy generation.

It is the purpose of the present paper to make an evaluation of the amount of carbon formed during the pre-main-sequence contraction of massive stars, initially composed of pure hydrogen, for masses in the range $40 \mathrm{M}_{\odot}$ to $120 \mathrm{M}_{\odot}$, to follow the evolution of these stars during their hydrogen burning phase, and to determine the amount of carbon formed during this period.

It will be shown that the evolution of these stars, during the hydrogen burning phase, differs markedly from the evolution of stars, of comparable mass, with a more "normal" composition. Due to the much smaller abundance of carbon in the present models, the central and effective temperatures will be higher and, since thie stars considered here have a much higher initial hydrogen abundance, it will take longer to reach the stage of hydrogen depletion in the core.

II. Construction of Models with Non-uniform Composition

Following Schwarzschild and Härm (1958) we have constructed equilibrium models of stars, with non-uniform composition, consisting of three zones:
a convective core which contains almost all the nuclear energy production;
an unstable intermediate zone in convective neutrality, with varying composition;
a radiative envelope composed of pure hydrogen.
If we assume that electron scattering is the main source of opacity, i.e. that the opacity is given by

$$
\kappa=0 \cdot 2004(1+X),
$$

X being the abundance by weight of hydrogen, then, in order to construct our threezone models, we have to integrate the following systems of differential equations:

[^0]A. In the envelope
\[

$$
\begin{aligned}
\frac{\mathrm{d} \bar{m}}{\mathrm{~d} x} & =4 \pi x^{2} \frac{a M_{\odot}^{2}}{3 \mathscr{R}} \bar{t}^{3} \frac{\beta}{1-\beta} \\
\frac{\mathrm{d} \bar{l}}{\mathrm{~d} x} & =-\frac{\beta}{16 \pi c \mathscr{R}} \cdot \frac{1}{(1-\beta) M_{\odot}} \cdot \frac{l_{\mathrm{e}}}{x^{2}} \\
\frac{\mathrm{~d} \beta}{\mathrm{~d} x} & =\frac{1}{\mathscr{R}} \frac{\beta(1-\beta)}{\bar{t}} \frac{1}{x^{2}}\left\{\frac{l_{\mathrm{e}}}{4 \pi c(1-\beta) M_{\odot}}-\bar{m} G\right\}
\end{aligned}
$$
\]

together with the equation of state

$$
\bar{p}=\frac{a M_{\odot}^{2} \bar{t}^{4}}{3(1-\beta)},
$$

where

$$
\begin{aligned}
\bar{p} & =R^{4} \mu_{\mathrm{e}}^{4} P / M_{\odot}^{2} \\
\bar{t} & =R \mu_{\mathrm{e}} T / M_{\odot} \\
\bar{m} & =\mu_{\mathrm{e}}^{2} M_{r} / M_{\odot} \\
x & =r / R \\
l_{\mathrm{e}} & =\kappa_{\mathrm{e}} \mu_{\mathrm{e}}^{2} L
\end{aligned}
$$

We have chosen β as dependant variable instead of \bar{p}, on account of its smaller variation in the outer layers of the star. μ_{e} is the molecular weight in the outer layers

$$
\mu_{\mathrm{e}}=1 /\left(1 \cdot 25 X_{\mathrm{e}}-0 \cdot 25 Z_{\mathrm{e}}+0 \cdot 75\right)=0 \cdot 5
$$

and

$$
\kappa_{\mathrm{e}}=0 \cdot 2004\left(1+X_{\mathrm{e}}\right)=0 \cdot 4008
$$

since $X_{\mathrm{e}}=1$ and $Z_{\mathrm{e}}=0$.
B. In the intermediate zone and core

$$
\begin{aligned}
\frac{\mathrm{d} \bar{m}}{\mathrm{~d} x} & =4 \pi x^{2} \beta \alpha \frac{\bar{p}}{\mathscr{R} \bar{t}} \\
\frac{\mathrm{~d} \bar{p}}{\mathrm{~d} x} & =-\frac{\beta \bar{p}}{\mathscr{R} \bar{t}} \alpha \frac{G \bar{m}}{x^{2}} \\
\frac{\mathrm{~d} \bar{t}}{\mathrm{~d} x} & =-\frac{2(4-3 \beta)}{32-3 \beta^{2}-24 \beta} \alpha \frac{\beta}{\mathscr{R}} \cdot \frac{G \bar{m}}{x^{2}},
\end{aligned}
$$

where α is the ratio of molecular weights,
in the core: $\quad \alpha=\alpha_{c}=\mu_{c} / \mu_{\mathrm{e}}$,
in the intermediate zone: $\alpha=\mu / \mu_{\mathrm{e}}$,
with

$$
\mu=1 /\{1 \cdot 25(1+X)-0 \cdot 5-0 \cdot 25 Z\} .
$$

The value of $(1+X)$ in the intermediate zone is given by the condition of convective neutrality

$$
\left|\left(\frac{\mathrm{d} T}{\mathrm{~d} r}\right)_{\mathrm{rad}}\right|=\left|\left(\frac{\mathrm{d} T}{\mathrm{~d} r}\right)_{\mathrm{ad}}\right|
$$

or

$$
\frac{8-6 \beta}{32-3 \beta^{2}-24 \beta} \cdot \frac{T}{P} \cdot \frac{\mathrm{~d} P}{\mathrm{~d} r}=-\frac{3 \kappa}{16 \pi a c} \cdot \frac{\rho}{T^{3}} \cdot \frac{L}{r^{2}},
$$

which, in our notation, reduces to

$$
(1+X)=\left(1+X_{\mathrm{e}}\right) \frac{32 \pi c(4-3 \beta)(1-\beta) G \bar{m} M_{\odot}}{\left(32-3 \beta^{2}-24 \beta\right) l_{\mathrm{e}}}
$$

It follows from this formula that, at each point of the intermediate zone, the value of α is known in terms of the other variables.

At the surface the boundary condition was taken as $T=0$, together with the expansions

$$
\begin{aligned}
\beta & =\beta_{\mathrm{e}} \\
\bar{m}_{\mathrm{e}} & =\mu_{\mathrm{e}}^{2} M / M_{\odot} \\
\bar{t} & =\frac{\beta_{\mathrm{e}} G \bar{m}_{\mathrm{e}}}{4 \mathscr{R}}\left(\frac{1}{x}-1\right) .
\end{aligned}
$$

The condition $\mathrm{d} \beta / \mathrm{d} x=0$ at the surface then leads to the mass-luminosity relation

$$
l_{\mathrm{e}}=4 \pi G c \bar{m}_{\mathrm{e}}\left(1-\beta_{\mathrm{e}}\right)
$$

Starting with a trial value of β_{e} and the expansions mentioned above, the integration was then continued till the boundary between the envelope and the intermediate region was reached, i.e. when the condition

$$
\left(32-3 \beta^{2}-24 \beta\right) l_{\mathrm{e}}=32 \pi c(4-3 \beta)(1-\beta) G \bar{m} M_{\odot}
$$

was satisfied.
The integrations were then continued throughout the intermediate layer with the appropriate value of α.

The boundary between intermediate zone and core is reached when $\alpha=\alpha_{c}$, and the integration proceeds then with this constant value of α_{c}.

Throughout the integration in the core a constant check was kept on the value of $\mathrm{d} \beta / \mathrm{d} x$ and $d^{2} \beta / d x^{2}$. Both these quantities should be positive.

If $\mathrm{d} \beta / \mathrm{d} x$ becomes negative it means that the integration was started with too large a value of β_{e}. If $\mathrm{d}^{2} \beta / \mathrm{d} x^{2}$ is negative the initial β_{e} is too small.

As soon as a point x_{p} was reached, where either $\mathrm{d} \beta / \mathrm{d} x$ or $\mathrm{d}^{2} \beta / \mathrm{d} x^{2}$ was negative, a rough estimate was made of the value of β at the centre, using the formula

$$
\beta_{\mathrm{c}}=\beta_{\mathrm{p}}-\frac{1}{2} x_{\mathrm{p}}\left(\frac{\mathrm{~d} \beta}{\mathrm{~d} x}\right)_{\mathrm{p}}
$$

where

$$
\left(\frac{\mathrm{d} \beta}{\mathrm{~d} x}\right)_{\mathrm{p}}=\frac{3 G \alpha_{\mathrm{c}} \beta_{\mathrm{p}}^{3}\left(1-\beta_{\mathrm{p}}\right) \bar{m}_{\mathrm{p}}}{\mathscr{R} t_{\mathrm{p}} x_{\mathrm{p}}^{2}\left(32-3 \beta_{\mathrm{p}}^{2}-24 \beta_{\mathrm{p}}\right)}
$$

With this rough estimate of β_{c} a series expansion of β was constructed, of the form

$$
\beta=\beta_{\mathbf{c}}+\beta_{2}^{\prime} x^{2}+\beta_{4}^{\prime} x^{4}+h x^{6}
$$

where

$$
\begin{aligned}
& \beta_{2}^{\prime}=\frac{4 \pi G}{\mathscr{R}} \cdot \frac{1}{\Delta t_{\mathrm{c}}} \rho_{\mathrm{c}}^{\prime} \beta_{\mathrm{c}}^{3}\left(1-\beta_{\mathrm{c}}\right), \\
& \beta_{4}^{\prime}=\frac{\pi G}{\mathscr{R}} \cdot \frac{1}{t_{\mathrm{c}} \Delta}\left\{b c+a d+a c\left(f-\frac{t_{2}}{t_{\mathrm{c}}}\right)\right\} \\
& h=\frac{\left(\frac{\mathrm{d} \beta}{\mathrm{~d} x}\right)_{\mathrm{p}}-2 \beta_{2}^{\prime} x_{\mathrm{p}}-4 \beta_{4}^{\prime} x_{\mathrm{p}}^{3}}{6 x_{\mathrm{p}}^{5}}
\end{aligned}
$$

and

$$
\begin{aligned}
& t_{\mathrm{c}}=t_{\mathrm{c}} M_{\odot}, \\
& \rho_{\mathrm{c}}^{\prime}=\frac{a}{3 \mathscr{R}^{\prime}} t_{\mathrm{c}}^{\mathbf{c}} \frac{\beta_{\mathrm{c}}}{1-\beta_{\mathrm{c}}}, \\
& \Delta=32-3 \beta_{c}^{2}-24 \beta_{\mathrm{c}}, \\
& \cdot t_{2}=\frac{-\left(4-3 \beta_{\mathrm{c}}\right)}{\Delta} \cdot \frac{\beta_{\mathrm{c}}}{\mathscr{R}} \cdot \frac{4 \pi G \rho_{\mathrm{c}}^{\prime}}{3}, \\
& \rho_{2}^{\prime}=\frac{a}{3 \mathscr{R}} \cdot \frac{t_{\mathrm{c}}^{3}}{1-\beta_{\mathrm{c}}}\left\{\frac{\beta_{2}^{\prime}}{1-\beta_{\mathrm{c}}}+3 \beta_{\mathrm{c}} \frac{t_{2}}{t_{\mathrm{c}}}\right\}, \\
& a=\beta_{\mathrm{c}}\left(1-\beta_{\mathrm{c}}\right), \\
& b=\beta_{2}^{\prime}\left(1-2 \beta_{\mathbf{c}}\right), \\
& c=\rho_{\mathrm{c}}^{\prime} \beta_{\mathrm{c}}^{2}, \\
& d=\beta_{\mathbf{c}}\left(2 \rho_{\mathrm{c}}^{\prime} \beta_{2}^{\prime}+\frac{3}{5} \rho_{2}^{\prime} \beta_{\mathrm{c}}\right), \\
& f=6 \beta_{2}^{\prime}\left(\beta_{c}+4\right) / \Delta .
\end{aligned}
$$

This series expansion was used to compute the value of β_{p} (int.) at the point x_{p} and this value was then compared with the value of β_{p} (ext.) obtained from the integration of the differential equations.

The value of β_{c} was then adjusted in order to make the difference between these two values of β_{p} smaller than a given number (e.g. 10^{-5}).

Using this value of β_{c} it is then possible to estimate the mass \bar{m}_{p} (int.) at the point x_{p}, using the formula

$$
\bar{m}_{\mathrm{p}}=\frac{4 \pi a \alpha_{\mathrm{c}}}{3 \mathscr{R} M_{\odot}^{4}} \int_{0}^{x_{\mathrm{p}}} \frac{\beta}{1-\beta} x^{2} \bar{t}^{3} \mathrm{~d} x
$$

where (Van der Borght and Meggitt 1963)

$$
\bar{t}=\bar{t}_{\mathrm{c}}\left\{\frac{\beta_{\mathrm{c}} \exp \left(-4 / \beta_{\mathrm{c}}\right)}{1-\beta_{\mathrm{c}}} \cdot \frac{1-\beta}{\beta \exp (-4 / \beta)}\right\}^{2 / 3} .
$$

The value of

$$
\bar{M}=\mid \bar{m}_{\mathrm{p}}(\text { int. })-\bar{m}_{\mathrm{p}}(\mathrm{ext}) \mid,
$$

where \bar{m}_{p} (ext.) is the value of \bar{m}_{p} obtained from the integration of the differential equations, was then used as a measure of the accuracy of the trial value of β_{e}.

Once two values of β_{e} have been found, one too large and the other too low, it is easy to make the procedure quite automatic and by using the weight factor \bar{M} to construct an iterative method which converges quite rapidly to the right value of β_{e}.

Using the above method, the system of differential equations was integrated on the IBM 1620 Computer of the Research School of Physical Sciences for values of $\bar{m}_{\mathrm{e}}=10,15,20,30$ for various values of α_{c} ranging from 1 to $2 \cdot 4$ corresponding to hydrogen abundances X_{f} in the core, in the range 1 to $0 \cdot 067$.

The main results of these computations are given in Tables 1-4.

III. Pre-main-sequence Contraction

The carbon abundance at the end of the pre-main-sequence contraction has been computed by considering the homologous contraction of the stars, i.e. by assuming that the distributions of the quantities $x, \bar{m}, \bar{p}, \bar{t}$, and β remain similar, throughout the contraction, to those derived for the uniform main-sequence model.

Since the aim of the present section is to derive an estimate of the carbon abundance when the stars have reached the main sequence, it is to be expected that the method of homologous contraction will yield fairly accurate results, especially during the later stages of the contraction when most of the carbon is formed.

The energy equation

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{P}{\rho^{2}} \frac{\mathrm{~d} \rho}{\mathrm{~d} t}+\epsilon-\frac{1}{4 \pi r^{2} \rho} \frac{\mathrm{~d} L_{r}}{\mathrm{~d} r},
$$

Table 1
$M=40 \mathrm{M}_{\odot}$

Characteristic	$\alpha_{\text {c }}$									
	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$
β_{c}	0-794	0•766	$0 \cdot 739$	$0 \cdot 716$	$0 \cdot 694$	$0 \cdot 657$	$0 \cdot 625$	$0 \cdot 598$	$0 \cdot 575$	$0 \cdot 553$
β_{f}	$0 \cdot 865$	$0 \cdot 832$	0.804	$0 \cdot 778$	$0 \cdot 754$	$0 \cdot 713$	$0 \cdot 679$	$0 \cdot 648$	$0 \cdot 624$	$0 \cdot 600$
β_{1}	-	$0 \cdot 844$	$0 \cdot 826$	$0 \cdot 809$	$0 \cdot 794$	$0 \cdot 769$	$0 \cdot 749$	$0 \cdot 732$	$0 \cdot 719$	$0 \cdot 707$
β_{R}	$0 \cdot 904$	$0 \cdot 887$	0.872	$0 \cdot 858$	$0 \cdot 846$	$0 \cdot 824$	$0 \cdot 806$	$0 \cdot 791$	$0 \cdot 779$	$0 \cdot 768$
$x_{\text {f }}$	$0 \cdot 392$	$0 \cdot 339$	$0 \cdot 299$	$0 \cdot 266$	$0 \cdot 237$	$0 \cdot 191$	$0 \cdot 156$	$0 \cdot 128$	$0 \cdot 107$	$0 \cdot 088$
x_{1}	-	$0 \cdot 370$	$0 \cdot 353$	$0 \cdot 338$	$0 \cdot 325$	0-304	$0 \cdot 288$	$0 \cdot 274$	$0 \cdot 264$	$0 \cdot 255$
$q_{\text {f }}$	$0 \cdot 572$	0.517	$0 \cdot 479$	$0 \cdot 450$	$0 \cdot 425$	$0 \cdot 386$	$0 \cdot 356$	$0 \cdot 331$	$0 \cdot 311$	$0 \cdot 293$
q_{1}	-	$0 \cdot 593$	$0 \cdot 611$	$0 \cdot 627$	$0 \cdot 641$	$0 \cdot 662$	$0 \cdot 679$	$0 \cdot 693$	$0 \cdot 703$	$0 \cdot 711$
$X_{\text {f }}$	$1 \cdot 000$	$0 \cdot 855$	0.733	$0 \cdot 631$	$0 \cdot 543$	$0 \cdot 400$	$0 \cdot 289$	$0 \cdot 200$	0-127	$0 \cdot 067$
\bar{X}	$1 \cdot 000$	0.921	$0 \cdot 859$	$0 \cdot 810$	$0 \cdot 769$	$0 \cdot 705$	$0 \cdot 660$	$0 \cdot 626$	$0 \cdot 600$	$0 \cdot 581$
$\log \left(L / L_{\odot}\right)$	5-104	$5 \cdot 173$	$5 \cdot 227$	5.271	5-308	$5 \cdot 365$	$5 \cdot 407$	$5 \cdot 440$	5•464	$5 \cdot 485$
$\log T_{\mathrm{e}}$	4.892	$4 \cdot 842$	$4 \cdot 830$	4-812	$4 \cdot 802$	$4 \cdot 777$	$4 \cdot 751$	4-724	$4 \cdot 699$	$4 \cdot 675$
$\log \left(X_{C} 10^{10}\right)$	$\overline{3} \cdot 124$	$0 \cdot 065$	$0 \cdot 380$	$0 \cdot 744$	$0 \cdot 865$	1-152	$1 \cdot 398$	1-611	$1 \cdot 810$	$2 \cdot 045$
τ (10^{6} years)	$0 \cdot 176$	$2 \cdot 498$	$4 \cdot 160$	$5 \cdot 325$	$6 \cdot 217$	$7 \cdot 468$	$8 \cdot 245$	8.784	9-148	$9 \cdot 417$
$\log \left(R / R_{\odot}\right)$	$0 \cdot 288$	$0 \cdot 423$	$0 \cdot 474$	$0 \cdot 531$	$0 \cdot 570$	$0 \cdot 648$	$0 \cdot 723$	$0 \cdot 792$	$0 \cdot 854$	0.913
$T_{\mathrm{c}} 10^{-8}$	$1 \cdot 375$	$1 \cdot 143$	$1 \cdot 140$	$1 \cdot 114$	1-131	$1 \cdot 146$	$1 \cdot 163$	$1 \cdot 186$	$1 \cdot 216$	$1 \cdot 259$

Table 2
$M=60 \mathrm{M}_{\odot}$

Characteristic	$\alpha_{\text {c }}$									
	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$
β_{c}	$0 \cdot 714$	$0 \cdot 681$	$0 \cdot 651$	$0 \cdot 625$	$0 \cdot 601$	$0 \cdot 562$	$0 \cdot 529$	$0 \cdot 501$	$0 \cdot 477$	$0 \cdot 456$
β_{f}	$0 \cdot 800$	$0 \cdot 757$	$0 \cdot 720$	$0 \cdot 689$	$0 \cdot 661$	$0 \cdot 614$	$0 \cdot 577$	$0 \cdot 546$	$0 \cdot 518$	$0 \cdot 495$
β_{1}	-	$0 \cdot 773$	0.749	$0 \cdot 728$	$0 \cdot 709$	$0 \cdot 677$	$0 \cdot 652$	$0 \cdot 631$	$0 \cdot 613$	$0 \cdot 599$
β_{R}	$0 \cdot 843$	$0 \cdot 818$	$0 \cdot 796$	$0 \cdot 776$	$0 \cdot 758$	$0 \cdot 728$	$0 \cdot 702$	$0 \cdot 682$	$0 \cdot 664$	$0 \cdot 650$
$x_{\text {f }}$	$0 \cdot 435$	$0 \cdot 376$	$0 \cdot 329$	$0 \cdot 292$	$0 \cdot 259$	$0 \cdot 207$	$0 \cdot 167$	$0 \cdot 135$	$0 \cdot 108$	$0 \cdot 088$
x_{1}	-	$0 \cdot 415$	$0 \cdot 398$	$0 \cdot 383$	$0 \cdot 370$	$0 \cdot 348$	$0 \cdot 330$	$0 \cdot 316$	$0 \cdot 303$	$0 \cdot 293$
$q_{\text {f }}$	$0 \cdot 667$	$0 \cdot 606$	$0 \cdot 565$	0.533	$0 \cdot 506$	$0 \cdot 463$	$0 \cdot 430$	$0 \cdot 402$	$0 \cdot 378$	$0 \cdot 360$
q_{1}	-	$0 \cdot 693$	$0 \cdot 714$	$0 \cdot 731$	$0 \cdot 746$	$0 \cdot 770$	$0 \cdot 790$	$0 \cdot 800$	$0 \cdot 812$	$0 \cdot 820$
$X_{\text {f }}$	$1 \cdot 000$	$0 \cdot 855$	0.733	$0 \cdot 631$	$0 \cdot 543$	$0 \cdot 400$	$0 \cdot 289$	$0 \cdot 200$	$0 \cdot 127$	$0 \cdot 067$
\bar{X}	$1 \cdot 000$	$0 \cdot 908$	$0 \cdot 834$	$0 \cdot 775$	$0 \cdot 726$	$0 \cdot 650$	$0 \cdot 595$	$0 \cdot 554$	$0 \cdot 522$	$0 \cdot 498$
$\log \left(L / L_{\odot}\right)$	$5 \cdot 492$	5-555	5-605	$5 \cdot 645$	$5 \cdot 679$	$5 \cdot 731$	$5 \cdot 769$	5.798	$5 \cdot 822$	$5 \cdot 840$
$\log T_{\mathrm{e}}$	$4 \cdot 966$	$4 \cdot 885$	$4 \cdot 872$	$4 \cdot 853$	4.841	$4 \cdot 812$	$4 \cdot 782$	$4 \cdot 752$	4-720	$4 \cdot 692$
$\log \left(X_{\mathrm{C}} 10^{10}\right)$	$\overline{3} \cdot 932$	$0 \cdot 263$	$0 \cdot 560$	$0 \cdot 890$	$1 \cdot 017$	$1 \cdot 290$	$1 \cdot 533$	$1 \cdot 732$	$1 \cdot 945$	$2 \cdot 170$
τ (10^{6} years)	$0 \cdot 093$	1-764	$2 \cdot 989$	$3 \cdot 876$	4.538	$5 \cdot 492$	$6 \cdot 109$	$6 \cdot 524$	6.829	$7 \cdot 043$
$\log \left(R / R_{\odot}\right)$	0.334	$0 \cdot 527$	$0 \cdot 580$	$0 \cdot 637$	$0 \cdot 677$	0.761	$0 \cdot 841$	0.916	$0 \cdot 992$	$1 \cdot 056$
$T_{\mathrm{c}} 10^{-8}$	1.651	1-192	$1 \cdot 183$	$1 \cdot 158$	1-171	$1 \cdot 186$	$1 \cdot 203$	$1 \cdot 229$	$1 \cdot 259$	$1 \cdot 316$

Table 3
$M=80 \mathrm{M}_{\odot}$

Characteristic	α_{c}									
	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$
β_{c}	$0 \cdot 654$	$0 \cdot 620$	$0 \cdot 589$	$0 \cdot 563$	$0 \cdot 539$	$0 \cdot 500$	$0 \cdot 468$	$0 \cdot 441$	$0 \cdot 417$	$0 \cdot 398$
β_{f}	$0 \cdot 747$	$0 \cdot 697$	$0 \cdot 658$	$0 \cdot 624$	$0 \cdot 595$	$0 \cdot 548$	$0 \cdot 510$	$0 \cdot 479$	$0 \cdot 452$	$0 \cdot 431$
β_{1}	-	$0 \cdot 716$	$0 \cdot 689$	$0 \cdot 666$	$0 \cdot 645$	$0 \cdot 610$	$0 \cdot 583$	0.561	$0 \cdot 542$	$0 \cdot 527$
β_{R}	$0 \cdot 790$	$0 \cdot 760$	$0 \cdot 734$	$0 \cdot 710$	$0 \cdot 690$	$0 \cdot 655$	$0 \cdot 627$	$0 \cdot 603$	$0 \cdot 584$	$0 \cdot 568$
x_{t}	$0 \cdot 468$	$0 \cdot 401$	$0 \cdot 351$	$0 \cdot 309$	$0 \cdot 274$	$0 \cdot 216$	0-172	$0 \cdot 137$	0-109	$0 \cdot 088$
x_{1}	-	$0 \cdot 448$	$0 \cdot 431$	$0 \cdot 416$	$0 \cdot 403$	$0 \cdot 380$	0.362	$0 \cdot 347$	$0 \cdot 333$	0-322
q_{f}	$0 \cdot 731$	$0 \cdot 664$	$0 \cdot 620$	$0 \cdot 585$	0.556	0.510	$0 \cdot 472$	0.443	$0 \cdot 418$	$0 \cdot 398$
q_{1}	-	$0 \cdot 756$	$0 \cdot 789$	$0 \cdot 794$	$0 \cdot 808$	0.833	$0 \cdot 845$	$0 \cdot 857$	$0 \cdot 867$	$0 \cdot 874$
X_{p}	1.000	$0 \cdot 855$	$0 \cdot 733$	0.631	$0 \cdot 543$	$0 \cdot 400$	$0 \cdot 289$	0. 200	$0 \cdot 127$	$0 \cdot 067$
\bar{X}	$1 \cdot 000$	$0 \cdot 899$	0.818	$0 \cdot 754$	$0 \cdot 700$	$0 \cdot 617$	$0 \cdot 557$	$0 \cdot 513$	$0 \cdot 478$	$0 \cdot 453$
$\log \left(L / L_{\odot}\right)$	5•743	5-800	5-846	5-882	5.912	$5 \cdot 959$	$5 \cdot 993$	$6 \cdot 019$	$6 \cdot 040$	$6 \cdot 056$
$\log T_{\mathrm{e}}$	$5 \cdot 006$	4.911	$4 \cdot 896$	$4 \cdot 877$	$4 \cdot 863$	4-832	4-799	$4 \cdot 765$	$4 \cdot 730$	4•700
$\log \left(X_{C} 10^{10}\right)$	$\overline{2} \cdot 225$	$0 \cdot 380$	$0 \cdot 653$	0.981	1-104	$1 \cdot 366$	$1 \cdot 610$	1.808	$2 \cdot 025$	$2 \cdot 263$
τ (10^{6} years)	$0 \cdot 082$	$1 \cdot 453$	$2 \cdot 474$	$3 \cdot 211$	3•772	$4 \cdot 582$	5•109	$5 \cdot 470$	5•734	5.919
$\log \left(R / R_{\odot}\right)$	$0 \cdot 378$	$0 \cdot 599$	0.651	0.708	0.749	$0 \cdot 835$	0.919	0.999	$1 \cdot 080$	$1 \cdot 148$
$T_{\mathrm{c}} 10^{-8}$	1-809	1-221	$1 \cdot 210$	1-184	1-197	1.214	$1 \cdot 230$	1-258	$1 \cdot 290$	1-349

Table 4
$M=120 \mathrm{M}_{\odot}$

Characteristic	$\alpha_{\text {c }}$									
	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$
$\beta_{\text {c }}$	$0 \cdot 571$	$0 \cdot 537$	$0 \cdot 507$	$0 \cdot 481$	$0 \cdot 459$	$0 \cdot 421$	$0 \cdot 392$	$0 \cdot 367$	$0 \cdot 346$	$0 \cdot 329$
β_{f}	$0 \cdot 666$	0.611	$0 \cdot 569$	0.535	$0 \cdot 507$	$0 \cdot 461$	$0 \cdot 425$	$0 \cdot 397$	$0 \cdot 373$	$0 \cdot 355$
β_{1}	-	$0 \cdot 632$	$0 \cdot 603$	$0 \cdot 578$	0.556	$0 \cdot 520$	$0 \cdot 492$	$0 \cdot 469$	$0 \cdot 450$	$0 \cdot 436$
β_{R}	$0 \cdot 706$	$0 \cdot 671$	$0 \cdot 641$	$0 \cdot 615$	$0 \cdot 592$	$0 \cdot 554$	$0 \cdot 524$	$0 \cdot 499$	$0 \cdot 480$	$0 \cdot 465$
x_{1}	$0 \cdot 512$	0.433	$0 \cdot 376$	$0 \cdot 330$	$0 \cdot 291$	$0 \cdot 227$	$0 \cdot 177$	0-139	$0 \cdot 108$	$0 \cdot 087$
x_{1}	-	$0 \cdot 493$	$0 \cdot 477$	$0 \cdot 462$	$0 \cdot 449$	$0 \cdot 426$	$0 \cdot 407$	$0 \cdot 390$	$0 \cdot 377$	$0 \cdot 366$
q_{f}	$0 \cdot 808$	$0 \cdot 733$	$0 \cdot 684$	$0 \cdot 646$	$0 \cdot 614$	$0 \cdot 562$	$0 \cdot 522$	$0 \cdot 488$	$0 \cdot 461$	$0 \cdot 440$
q_{1}	-	$0 \cdot 831$	$0 \cdot 848$	$0 \cdot 863$	$0 \cdot 874$	0.891	$0 \cdot 903$	0.913	0.919	$0 \cdot 924$
X_{1}	$1 \cdot 000$	0.855	$0 \cdot 733$	$0 \cdot 631$	$0 \cdot 543$	$0 \cdot 400$	$0 \cdot 289$	0. 200	0.127	$0 \cdot 067$
\bar{X}	$1 \cdot 000$	$0 \cdot 888$	$0 \cdot 800$	$0 \cdot 729$	$0 \cdot 671$	0.581	$0 \cdot 517$	$0 \cdot 469$	$0 \cdot 432$	$0 \cdot 405$
$\log \left(L / L_{\odot}\right)$	6.066	6-114	$6 \cdot 152$	$6 \cdot 183$	6-207	$6 \cdot 246$	6.274	6-296	$6 \cdot 313$	$6 \cdot 325$
$\log T_{\text {e }}$	$5 \cdot 055$	$4 \cdot 939$	$4 \cdot 924$	4.902	$4 \cdot 888$	$4 \cdot 853$	$4 \cdot 815$	4•779	4•739	4-707
$\log \left(X_{C} 10^{10}\right)$	$\overline{2} \cdot 496$	0.522	$0 \cdot 772$	1.097	1-207	$1 \cdot 464$	$1 \cdot 719$	1.897	$2 \cdot 137$	$2 \cdot 362$
τ (10^{6} years)	$0 \cdot 060$	$1 \cdot 160$	$1 \cdot 972$	$2 \cdot 572$	$3 \cdot 028$	$3 \cdot 693$	4-132	$4 \cdot 440$	4.660	$4 \cdot 817$
$\log \left(R / R_{\odot}\right)$	$0 \cdot 444$	$0 \cdot 698$	$0 \cdot 749$	$0 \cdot 807$	0.848	0.936	$1 \cdot 027$	$1 \cdot 110$	1-199	1-269
$T_{c} 10^{-8}$	$2 \cdot 040$	1-259	1-249	$1 \cdot 216$	$1 \cdot 232$	1-249	$1 \cdot 261$	$1 \cdot 297$	$1 \cdot 326$	1-396

where

$$
E=3 \mathscr{R} T / 2 \mu+a T^{4} / \rho,
$$

reduces, after some lengthy calculations, to

$$
l_{\mathrm{e}}=\frac{4 \pi M_{\odot}}{\mathscr{R}} \kappa_{\mathrm{e}} \int_{0}^{x_{\mathrm{f}}} \epsilon x^{2} \frac{\bar{p} \beta}{\bar{t}} \mathrm{~d} x+\frac{6 \pi M_{\odot}^{2} \kappa_{\mathrm{e}}}{\mu_{\mathrm{e}}^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{R}\right) \int_{0}^{1} x^{2} \beta \bar{p} \mathrm{~d} x .
$$

Fig. 1.-Hertzsprung-Russell diagram for massive stars initially composed of pure hydrogen, during their hydrogen burning phase. The dotted line indicates the main sequence for stars composed of pure hydrogen.

Fig. 2.-Variation of carbon content with time.
Since $l_{\mathrm{e}}, \kappa_{\mathrm{e}}, x_{\mathrm{f}}, \mu_{\mathrm{e}}$, and the distribution of $\bar{m}, \bar{p}, \bar{t}$, and β are known for the various models, it is possible to use this equation to estimate the central temperature T_{c}, the effective temperature T_{e}, and the radius R at the end of the pre-mainsequence contraction.

These quantities are given in Tables 1 to 4 in the column $\alpha_{c}=1 \cdot 0$.
We have also given the time τ taken by the stars to condense, under the assumption of homologous contraction, from an initial radius of $10^{13} \mathrm{~cm}$.

If $L_{\mathrm{pp}}, L_{\mathrm{CNO}}$, and $L_{3 \alpha}$ are the energy in ergs per second, liberated by the protonproton, carbon, and triple-alpha cycles, the rate of change of the helium abundance was derived from

$$
\frac{\mathrm{d} Y}{\mathrm{~d} t}=\left(\frac{L_{\mathrm{pp}}}{E_{\mathrm{pp}}}+\frac{L_{\mathrm{CNO}}}{E_{\mathrm{CC}}}-\frac{L_{3 \alpha}}{E_{3 \alpha}}\right) /\left(q_{\mathrm{f}} M\right)
$$

Fig. 3.-Variation with time in a star of mass $40 \mathrm{M}_{\odot}$ of:
the radius

luminosity due to the proton-proton cycle --------luminosity due to the carbon cycle

where (Schwarzschild 1958)

$$
\begin{aligned}
E_{\mathrm{pp}} & =6 \cdot 3 \times 10^{18} \mathrm{erg} / \mathrm{g} \\
E_{\mathrm{CC}} & =6 \cdot 0 \times 10^{18} \mathrm{erg} / \mathrm{g} \\
E_{3 \alpha} & =6 \cdot 0 \times 10^{17} \mathrm{erg} / \mathrm{g},
\end{aligned}
$$

q_{f} being the fraction of mass in the core and M the mass of the star.
The rate of change of carbon abundance per unit mass was computed by the formula

$$
\frac{\mathrm{d} X_{\mathrm{c}}}{\mathrm{~d} t}=\frac{L_{3 \alpha}}{1 \cdot 17 \times 10^{-5}} \times 12 \times 1 \cdot 672 \times 10^{-24} /\left(q_{\mathrm{f}} M\right)
$$

The luminosities for the various nuclear reactions were obtained from the rates of energy generation as given by Ledoux (1961) (Van der Borght and Meggitt 1963).

At temperatures greater than $1 \cdot 2 \times 10^{8}$ the energy generation by the carbon cycle has practically no temperature sensitivity. In order to take this into account we have computed $L_{\text {CNO }}$ at these temperatures by assuming that the rate of energy generation is equal to the one computed for a temperature of $1 \cdot 2 \times 10^{8}$.

IV. Evolution during the Hydrogen Burning Stage

The luminosity of the star during this stage is given by the condition of thermal equilibrium

$$
\frac{l_{\mathrm{e}}}{\kappa_{\mathrm{e}}}=\frac{4 \pi t_{\mathrm{c}}^{3}}{\mu T_{\mathrm{c}}^{3}} \int_{0}^{x_{\mathrm{f}}} x^{2} \rho \epsilon \mathrm{~d} x
$$

where $t_{\mathrm{c}}=\mu_{\mathrm{e}} R T_{\mathrm{e}}$, and ρ and x_{f} are known from the integrations in the second paragraph.

This formula can be used to derive the central temperature and hence the radii and effective temperatures of these stars for various values of α_{c}.

The age was computed from the formula

$$
\Delta t=6 \cdot 0 \times 10^{18} \Delta \bar{X} . M / L
$$

and the main results of these computations are also given in Tables 1 to 4.
The positions of the stars in the Hertzsprung-Russell diagram are given in Figure 1 and the variation of their carbon content with time in Figure 2.

In Figure 3 we have shown the variation with time of the radius and compared the contribution to the energy generation of the proton-proton and carbon cycles during the pre-main-sequence contraction and hydrogen burning stage of a star of mass $M=40 \mathrm{M}_{\odot}$.

V. References

Boury, A. (1960).-Bull. Soc. Sci. Liège 29: 306.
Ezer, D. (1961).-Astrophys. J. 133: 165.
Ledoux, P. (1961).—Rev. Quest. Sci. 20th April.
Schwarzschild, M. (1958).-"Structure and Evolution of the Stars." (Princeton Univ. Press.) Schwarzschild, M., and Härm, R. (1958).-Astrophys. J. 128: 348.
Van der Borght, R., and Meggitt, S. (1963).-Aust. J. Phys. 16: 415.

[^0]: * Department of Mathematics, School of General Studies, Australian National University, Canberra.

