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Summary 

Previous results on the statistical mechanics of almost one-dimensional 
systems of molecules or atoms are generalized to allow for the presence of a 
longitudinally varying external potential energy field. Methods for calculating 
the local density and higher order distribution functions are described. Equations 
valid for mixtures of molecules of different kinds are derived. Possible applications 
of the theor{jtical results are indicated and a detailed application to the two
dimensional hard disk system is described. 

INTRODUCTION 

A useful approach to the statistical mechanics of ,three-dimensional arrange
ments of molecules (compressed gases, liquids, and crystals) is based on regarding 
the three-dimensional system as built up of one-dimensional or almost one-dimensional 
systems which can be regarded to a first approximation as independent. The value 
of this lies in the fact that the configuration integral of classical statistical mechanics 
can be evaluated exactly for almost one-dimensional systems. This approach is 
used in the "tunnel" theory of fluids (Barker 1960, 1961) and has also been applied 
to crystals by Lloyd and O'Dwyer (1963a, 19636). More recently Alder, Hoover, 
and Wainwright (1963) concluded from extensive "molecular dynamics" studies 
of a two-dimensional system of hard disks that the initial stage of "melting" in this 
system was closely connected with the onset of sliding of whole lines of disks 
between neighbouring lines. This led them to make a suggestive though not 
entirely rigorous calculation of the configuration integral for a "crystalline" system 
of rigid disks taking into account correlated motions of lines of disks, which indicated 
that one would expect a phase transition ("melting") in the system at a density 
close to that at which the molecular dynamics calculations showed that such a 
transition actually occurred. The purpose of this work is to provide a firmer basis 
for the application of these ideas to crystalline materials. In a crystal o~e must 
regard the line of atoms or molecules as moving in a potential energy field generated 
by the neighbouring lines, which varies periodically along the axis of the "tunnel" 
in which molecules move (in the case of hard disks this is a variation of entropy 
or "free cross section" rather than of potential energy). At low temperatures or 
high densities this periodic field is so important that the molecules are all constrained 
to lie near the potential energy minima, so that one has a regular crystalline structure. 
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In fluids the effects due to different neighbouring lines are probably largely uncor
related, so that it seems to be a reasonable approximation to neglect the variation 
of potential energy along the tunnel, but in crystals this is much more doubtful. 
The calculations of Lloyd and O'Dwyer neglected this periodic potential, and those 
of Alder, Hoover, and Wainwright used an ad hoc "free area" concept. In this 
paper we show how to evaluate exactly the configuration integral for an almost 
one-dimensional system moving in such a periodic potential. We also obtain results 
for the case where the potential is not periodic. This, too, may have useful appli
cations in connection with the theory of surface tension and surface structure of 
liquids and of multilayer adsorption. Thus if one considered lines of molecules 
or tunnels at right angles to the liquid surface (or solid surface in the case of 
adsorption) the potential energy would rise near the surface from the value appropriate 
for the interior of the liquid to the value appropriate for free space; there would 
be a non-periodic variation of potential energy along the tunnel axis. The density 
distribution of a system of interacting molecules in such a potential energy field 
is of considerable interest; in this paper we show how to calculate the density 
and higher order distribution functions. For the sake of completeness we also describe 
the generalization of previous results to apply to mixtures of different kinds of 
molecules. The methods used here are generalizations of those described in a 
previous paper (Barker 1962) which will be referred to as 1. 

DESCRIPTION OF THE MODEL 

We choose the z-axis along the axis of the almost one-dimensional system; 
by "almost one-dimensional" we mean that if in a given configuration the molecules 
are numbered according to their z-coordinates then molecule i interacts only with 
molecules i±l, i±2, ... i±m, where m is reasonably small. Thus the potential 
energy of the whole system is given by 

m 
U = ~ V(Xi)+~ ~ u(xi,xi+r). (1) 

i i r~l 

Here V(xi) is a function of the coordinates Xi' Yh Zi of molecule i which represents 
the potential energy due to all molecules of the fluid or crystal which are not 
regarded as part of the almost one-dimensional system under consideration. It may 
vary, either periodically or non-periodically, with Zi; this is the essential difference 
from the systems considered in I, where V was assumed independent of Zi. The 
second sum in (1) represents the mutual interactions of the molecules of the system. 
In what follows we consider for brevity in notation only the case of nearest
neighbour interactions for which m is 1; this restriction is easily removed from the 
formal theory by the methods of 1. 

The configuration integral for a system with one molecule at x and N other 
molecules with z-coordinates between 0 and z is given by 

QN(X) = (ljN!)f ... f exp[ -UjkT]dxl ... dZN 

J. .. f 
z,<z, ... <zN+l 

N 
II [F(Xi)H(Xi' x i +1)]dx1 .•. dxN • 
i~l 

(2) 
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In the second form of (2) xN+1 is to be interpreted as x and we have 
introduced the functions 

F(x) = exp[ - V(x)jkT], 

H(x,x') = exp[ -u(x, x')jkT]. 

From (2) we find the result 

QN(X) = I I I QN_l(X')F(x')H(x, x')dx'. 
z'<z 

If we multiply this by AN and sum, defining Qo(x) to be 1, we find 

G(x) = 1+1.. I I I G(x')F(x')H(x,x')dx', 
O<z'<z 

00 

G(x) = ~ ANQN(X)' 
N=O 

(3) 

(4) 

(5) 

(6) 

(7) 

The function G(x) is a restricted grand partition function for the system with 
a molecule held at the point x. It can at least in principle be determined by solution 
of the integral equation (6). If the function H(x,x') can be approximated by a 
function of z-z' alone (strictly one-dimensional system) then (6) becomes an equation 
of Volterra type which is comparatively easily solved by numerical methods. 

In the simpler case with F(x) constant one can find a solution of (6) which 
is asymptotically proportional to e'PZ (cf. I; the symbol p here is pjkT in the notation 
of I). Analogous solutions are useful when F(x) is a periodic function of z (see below) 
but not when F(x) varies in non-periodic fashion. However, in this case F(x) would 
normally vary only in a limited region (e.g. the neighbourhood of a solid or liquid 
surface) and direct solution of (6) in this region is then practicable. If the system 
is confined to the region 0 < z < Z then the unrestricted grand partition function 
G* is given by 

G* = A I I I F(x')G(x')dx'. (8) 
O<z<Z 

The number of molecules N in the system is given in terms of the activity A by 
the relation 

aIn G* jaln A = N. (9) 

The Helmholtz free energy F is given by 

FjkT = Nln A-In G*. (1O}1 

Using these results the thermodynamic properties of the system can be calculated. 
To calculate the density and distribution function we proceed as follows. 

The function G(x) is the restricted grand partition function for the region between 
o and z; let G1(x) be the corresponding function for the region between z and Z, 
which is determined from the integral equation 

G1(x,y,Z-z) = 1+1.. II I G1(x', y',Z-z')F(x', y', Z-z')H(x, x')dx'. (11) 
z<z'<Z 
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The contribution to the unrestricted grand partition G* of the configurations 
with a molecule in the element dx at x is AF(x)G(x)GI(x)dx. If we divide this by G* 
we find the probability that there is a molecule in dx; this is the density times dx, 
so that the density at x is given by 

p(x) = AF(x)G(x)GI(x)jG*. (12) 

Further, the probability that there are molecules in the elements dXI at Xl' dX2 

at x 2, ••• dxn at Xn (with Zl < Z2 ... < zn) and no other molecules between Zl and Zn 
is given by 

[AnG(XI)GI(Xn)F(XI) ... F(xn)H(xI' x 2) ••• H(xn_l , xn)jG*]dxI ... dxn • (13) 

Using this result all the distribution functions can be calculated .. In particular, 
for a system with F(x) independent of Z this probability is proportional to the 
expression 

.p(XI'YI).p(XmYn)exp{ -p(zn -zl)}.F(xl ) ... F(xn)H(XI,X2) ••• H(xn _l>xn)dxI ... dXm (14) 

where the function .p is defined by equation (17) of I. 

All these results are readily generalized to cover systems composed of mixtures 
of different kinds of molecules. For a binary mixture of two kinds of molecules 
A and B we must define two different restricted partition functions GA(x) and GB(x) 
according as the molecule held at X is of kind A or B. Corresponding to the results 
(6)-(10) we find 

GA(x) = I+AA Iff GA(x')FA(x')HAA(x,x')dx' 

+AB Iff GB(x')F B (x')ll AB(x,x')dx', 

with a similar equation for GB(x), and 

G* = AA Iff GA(x)FA(x)dx+AB Iff GB(x)FB(x)dx, 

N A = oln G* loIn AA' 

FjkT =NAInAA+NBInAB-lnG*. 

(15) 

(16) 

(17) 

(18) 

In these equations FA' HAB etc. are defined by equations like (3) and (4) 
with V A(x) representing the potential energy of an A molecule at X, uAB(x, x') the 
mutual potential energy of an A molecule at x and a B molecule at x', and so on. 
If FA and FB are independent of z, the asymptotic expressions corresponding to 
equation (17) of I are readily derived and provide an eigenvalue system for deter
mining the one-dimensional pressure p in terms of the activities AA and AB' or 
vice versa. The further generalization to multicomponent mixtures is obvious. 

THE CASE OF A PERIODIC POTENTIAL 

If the function F(x) is a periodic function of Z then (6) has an asymptotic 
solution for large Z of the form 

G(x) = e2'Zg(x), (19) 
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where g(x) is also a periodic function of z and p is an appropriately chosen constant. 
This is the physically important solution (cf. I). Substituting (19) in (6) and 
neglecting e-PZ in comparison with 1 we find 

g(x) = A I I I g(x')F(x')H(x, x')eP(Z'-z)dx'. (20) 
z'<z 

As usual this is an eigenvalue system which determines A in terms of p or vice versa. 
If H(x,x') can be approximated by a function of z-z' alone (strictly one-dimensional 
situation) we can multiply (20) by F(x) and integrate over x and y; the resulting 
equation is 

g'(z) = A J: g'(z-u)j(z-u)e-'Pt'H(u)du, 

where 
j(z) = If F(x)dxdy, 

g'(z) = If F(x)g(x)dxdy / If F(x)dxdy. 

(21) 

(22) 

(23) 

The equation (21) is most conveniently solved by means of a Fourier expansion. 
Thus, if j(z) is a function of period 1, we may expand it in a Fourier series: 

00 

j(z) = I: ei2m7TZ/lJm' 
m=-oo 

If this is substituted in (21) we find 
00 

(I/A)g~ = 7Jn(P) I: j~~+m' 
m=-oo 

If l l 
g~ = -" g'(z)ei2rrnz/ldz, 

1 -11 

7Jn(P) = J: e-PuH(u)ei2rrnu/ldu. 

(24) 

(25) 

(26) 

(27) 

Thus the problem of finding A becomes that of finding the largest eigenvalue (smallest 
value of A) of an infinite matrix defined by the right-hand side of (25). If the Fourier 
series are truncated this becomes a finite matrix; if sufficient terms are retained 
the value of A can be determined with any desired accuracy. A simple method 
which works well in practice (using an electronic computer) is based on a direct 
iteration of (25), defining successive approximations g(~), A(i) to g~ and A by the 
equations 

[1/Ai+1]g~Hl) = G~Hl) 
00 

= 7Jn(P) I: fmg~i+m' (28) 
m=-oo 

I/A(Hl) = I:IG~Hl)12/I:lgWI2. (29) 
n n 

It is to be noted that g~ is not in general real, that is, that g(z) is not an even 
function of z, even if j(z) is. However, g~ is Hermitian in the sense that g'-n is the 
complex conjugate of g~, so that g(z) is real. 
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Once A has been determined as a function of p the thermodynamic properties 
can be derived from the equations 

N jL = A apjaA, (30) 

FjNkT = In A-a ln,\fa lnp. (31) 

Here N is the number of molecules, L the total length, and F the Helmholtz free 
energy. For a system of this kind the probability that there are molecules in the 
elements dz1 at Zv dZ2 at Z2' ... dZn at Zn and no other molecules between Zl and Zm 
is proportional to 

g'(Zl)f(Zl)!(Z2)!(Z3) .. . !(zn-l)!(Zn)g'( -Zn)H(z2-z1) ... H(Zn-Zn_l) 

X e-p(zn-z.) dZ1 ... dzn · (32) 

This result is derived from (13), and is valid only when !(z) is an even function. 

If the system cannot be treated as strictly one-dimensional it is necessary to 
solve the much more difficult eigenvalue problem posed by (20). Probably the best 
method would be to combine the Fourier expansion with the variational method 
outlined in Section V of I. 

An equation equivalent to (20) is given by Lloyd and O'Dwyer (1963b), who 
do not emphasize that it is valid in the presence of longitudinally varying fields, 
though this is clear from their formulation. Their derivation using a constant-force 
partition function is in some respects simpler and more general than that given 
here but does not lead readily to expressions for the distribution functions of the 
system and is not so easily generalized so as to apply to mixtures. 

ApPLICATION TO THE HARD DISK SYSTEM 

As an example of the use of the results derived here we will evaluate the 
partition function for a line of hard disks moving between two similar lines of equally 
spaced disks. This is closely related to the model used by Alder, Hoover, and 
Wainwright in their theory of "melting" in the hard disk system. The system is 
illustrated in Figures l(a) and l(b); the area accessible to the centres of the moving 
disks is shown shaded. In Figure l(b) the central line of disks can slide relative to the 
others, while in Figure l(a) it cannot. Alder, Hoover, and Wainwright point out 
that this sliding appears to be intimately connected with melting in their molecular 
dynamics calculations, and that the density at which sliding first becomes possible 
is close to the density at which melting occurs. They explain this by a calculation 
based on a theory of the cell type in which the "free area" is taken as the shaded 
area AB rather than the doubly shaded area CD as in the conventional cell theory; 
the justification for this is that the disks of the central line are supposed to be 
perfectly correlated and to move in unison. This appears to be a doubtful argument. 
The measure or contribution to the partition function of those configurations in 
which a number of particles move exactly in unison is, strictly speaking, zero. 
If the particles P and R (Fig. l(a)) are moving in unison and the particle Q can move 
as far as A in one direction then it can certainly not move as far as B in the other 
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direction, in fact it cannot move as far as D. For these reasons the area AB appears 
to overestimate the effective free area, and it seems worth while to make an accurate 
calculation of the partition function. 

The potential energy for a disk in the central line is to be taken as +00 if it 
lies outside the shaded area, and zero otherwise. We will make the approximation 
of treating the interaction between two disks of the central line as a function of 
the difference of their z-coordinates alone. Thus for disks 1 and 2 the interaction 
energy is +00 if Zl-Z2 < D and 0 otherwise (D is the hard disk diameter and 1 the 
nearest neighbour spacing). This approximation is a very good one at densities 

Fig. I.-Accessible area in the hard disk model. (a) liD = 1·1; (b) liD = I· 3. 

which are not too low, certainly at all densities higher than the density at which 
melting occurs. With this approximation we can use equation (21) with H(u) equal 
to 0 if u is less than D and 1 otherwise, and with J(z) equal to the width of the 
shaded area in Figure 1 at position z along the axis. This leads to the results 
(for 0 < z < il) 

J(z) = 0, 
= 3t1-{4D2-(1-2z)2}!, 

= 3t1/2, 

4D2_{l-2z)2 > 312, 

312 > 4D2-(1-2z)2 > 312/2, 
3l2/2 > 4D2-(1-2z)2. (33) 

For z outside the range 0 < z < i1 the definition of J(z) is completed by the 
relations 

J( -z) = J(z), 

J(z+nl) = J(z), n = 1, 2, .... 

(34) 

(35) 

For D/1 < 0·868517 the free energy for this system was evaluated using 
(25)-(27), (30), and (31). The Fourier coefficients ofJ(z) were calculated by numerical 
integration, the eigenvalue problem (25) for A was solved for given values of p by 
the iteration process described by (28) and (29), the value of p corresponding to 
the desired value 1 of L/N was determined by solving (30) using Newton's method, 
and the free energy was then calculated using (31). 

For D/1 > 0·868517 the distance AB of Figure l(a), which will be denoted by 2a, 
is less than D, so that it is impossible for two disks to occupy the same "cell" of 
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the available area. Thus LIN becomes equal to l only when p is infinite, so that the 
required free energy is the limiting value as p tends to infinity. Using the periodicity 
of g'(z) and the step-function character of H(u), equation (21) can be recast in the 
form (with the function g"(z) defined as g'( -z)) 

fll 
g"(z)e-PZ = A D+z g"(v)e-PVf(v)dv 

Ae-pi fll 
+1-e-P1 _l/'(v)e-PVf(v)dv, (-il < z < il-D) 

fll 
g"(z)e-PZ = Ae-P1 g"(v)e-PVf(v)dv 

.i; 
~ 
-:r 

D+z-l 

Ae-2pl fll 
+1-e-P1 _i"(v)e-PVf(v)dv, (il-D < z < il). 

O'lO r, -----------'-----------------, 

iil 0'05 

~ 
.!:. 
I 

o·o~ 
1'3 1·4 1·5 1'6 

A/AO 

Fig. 2.-Difference between calculated free energy and cell.theory 
value. 

(36) 

(37) 

This reformulation is valid for all values of Dil. However, when D > 2a the 
first integral in (36) is zero when z lies in the relevant region between -a and a 
(since f(v) is zero when v is greater than a and D+z is greater than a whenever z 
is greater than -a). Furthermore, as p tends to infinity the second term in (37) is 
negligible compared with the first, so that in the limit one finds 

ljJ(z) = A' f~a ljJ(v)f(v)dv, D+z-l < -a, 

= A' fa ljJ(v)f(v)dv, 
D+z-l 

D+z-l> -a. (38) 

Here ljJ(z) is the limit as p tends to infinity of g"(z)e-PZ and A' is the corresponding 
limit of Ae-P !. The limiting value of the free energy is given by 

FINkT = lim(ln A-pl) 
p-+oo 

= In A'. (39) 

The eigenvalue problem (38) for A' was solved by a straightforward iteration process 
in which an approximate ljJ(v) was substituted in the right-hand side of (38) to give 
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a new approximation, the process being repeated until successive values of A' 
differed by less than 1 in 10 000. The integrations were performed using the 
trapezoidal rule. 
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---- molecular dynamics; -'-'-' Alder, Hoover, and Wainwright; 
......... present results; - - - - cell theory. 

It is convenient'to present the results in terms of the difference between the 
free energy calculated here and that given by the conventional cell theory, which 
leads to the result 

FcelljNkT = -In{33/ 2l2j2-(3j2)(4D2_l2)t+D2[7T-6 sin-1(lj2D)]}. (40) 

The results are shown in Figure 2, in which -(F-Fcell)jNkT is plotted against 
AjAo, where A is the actual area and Ao the close-packed area. The calculated 
values of FjNkT are accurate to within ±O ·0002; this was confirmed by truncating 
the Fourier series at different points (for AjAo > 1'326) and by using different 
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intervals for the trapezoidal integration (for A/Ao < 1·326). The free energy varies 
quite smoothly through the point (A/Ao = 1·326) at which the method of solution 
was changed; this is a further indication that satisfactory numerical accuracy 
has been obtained. 

The pressure/area isotherm calculated from our free-energy results is plotted 
in Figure 3 together with the isotherm of Alder, Hoover, and Wainwright. Our 
isotherm is close to the cell-theory isotherm and shows no sign of a phase transition 
in this density region. This disappointing result casts some doubt on the results 
of Alder, Hoover, and Wainwright, since our partition function allows for all 
configurations of the central line, including the perfectly correlated configurations. 
It seems that the importance of the "sliding" motions in melting may lie in the 
fact that they provide a pathway connecting regions of configuration space 
characterizing the solid state and those characterizing the fluid state. The success 
of the tunnel theory of fluids suggests that these motions are important in the 
fluid phase. 
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