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Summary 

The anharmonic contribution to the free energy of a lattice is evaluated by 
means of a Bethe approximation. The approximation is accurate to within 3% for 
the model evaluated by Maradudin, Flinn, and Coldwell· Horsfall. The anharmonic 
contribution to the specific heat at constant volume of a model of sodium is evaluated. 
The specific heat is found to increase as the temperature rises but the rate of increase 
is lower than the observed value. 

1. INTRODUCTION 

The evaluation of the anharmonic contribution to the free energy of a lattice 
has proved to be extremely difficult. It has, however, been known since the work 
of Born and Brody (1921) and Schrodinger (1922) that at high temperatures the 
contribution to the free energy is quadratic in its dependence on temperature, or 
alternatively the contribution to the specific heat is linear in temperature. This 
anharmonic contribution, F AH, is known to be the sum of two terms. The first 
of these, F<t~v is the contribution of fourth-order differentials of the interatomic 
potentials and is positive. The second of these, Fifil>, is the contribution of the 
square of the third-order differentials of the interatomic potential and is negative. 
FAH = F<tk+Fifil) may then be either positive or negative. However, several 
authors (using approximate methods of calculating the contribution) have found 
that for simple potentials, such as a Morse or Leonard-Jones potential, the contri
bution to the specific heat is negative (cf. Dugdale and MacDonald 1954; Keller and 
Wallace 1962). 

Stern (1958) evaluated some of these complicated expressions exactly by 
analytical methods. However, this has been disputed by Maradudin, Flinn, and 
Coldwell-Horsfall (1961) and so the evaluation must be considered an approximation. 
Maradudin, Flinn, and Coldwell-Horsfall have evaluated the expressions for a simple 
model, using a computer to estimate the coefficients which appeared. This calculation 
can be used to check other analytic approximations by applying them to the 
same model. An important approximation of this type was introduced by Ludwig 
(1958) in a method of averaging over the mode function of the solid. In the model 
treated by Maradudin, Flinn, and Coldwell-Horsfall this approximation evaluates 
F<tk exactly and underestimates Fifil) by 16%. 

Most approximations for evaluating the anharmonic contribution to the 
specific heat are based on approximating the mode functions, even though the 
interest has been in high temperature contributions where classical statistics may 
be used. In the present paper an approximation based on the classical partition 
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function is used. This is the analogue of the approximation introduced by Bethe 
(1935) in order to approximate the classical partition function of the Ising model 
of ferromagnetism. This approximation can be easily solved for the anharmonic 
contribution to the specific heat and when applied to the simple model studied by 
Maradudin, Flinn, and Coldwell-Horsfall it gives F<tk exactly and F~i) to within 
3%. When this approximation is applied to a simple model of sodium, with a Morse 
interatomic potential, it leads to a positive increase in specific heat with temperature. 
This is in agreement with the observed behaviour of sodium, but the numerical 
value obtained is very low. 

II. THE BETHE ApPROXIMATION 

The Bethe approximation as used in the study of the Ising model of ferro
magnetism is used with nearest neighbour potentials only. The exact relation between 
expansions of the classical partition function and the Bethe approximation together 
with other treatments of the Ising model are given in a review article by Domb 
(1960). While the above treatment is written for the Ising model it is easy to trans
literate these equations into the present case and so this will not be presented here. 
We shall, however, present the Bethe approximation in a heuristic physical way, 
suitable for the present application to the calculation of the free energy of a lattice. 

Firstly, let us consider the case where only nearest neighbour potentials exist 
in the lattice and we can write the total potential in the form 

U = ~ Ua (rl>r2), (2.1) 
a 

where a is a subscript labelling the different nearest neighbour pairs of atoms. 
Then the idea of the Bethe approximation is that the behaviour of two nearest 
neighbour atoms is determined by the potential 

~' lJ'i(r1)+ UO(rl>r2)+~1 lJ'j(r2)· 
i j 

Here UO(rl>r2) is the interparticle potential (a = 0) and lJ'i(r1 ) is the effective 
potential on atom 1 due to the nearest neighbour bond, i. The prime on the summation 
is to show that the bond represented by the potential term UO(rl>r2) is not to be 
counted. 

This leads to a distribution function given by 

e-2,8Fep2(rl>r2) = exp{ _,8[~1 lJ'i(r1)+ UO(rl>r2)+~1 lJ'j(r2)]}, (2.2) 
i j 

where Fe is the configurational free energy per particle, ,8 = IjkT is the inverse 
temperature, and P2(rl>r2) is the probability distribution function for finding the 
first atom at position r 1 and the second atom at position r 2. The probability 
distribution function satisfies 

f P2(rl>r2)d3r2 = Pl(r1 ), (2.3) 

where Pl(r1) is the one-particle probability distribution function. This satisfies 

f Pl(r1)d3r1 = l. (2.4) 
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Now the one-particle distribution function can be found in a similar manner, 
since one particle will be in the potential 2:PAr1). This time there is no restriction 

i 
on the summation over i. The one-particle distribution is then given by 

e-flFcPl(r1) = exp{ -13[2: lfFi(r1)]}· 
i 

(2.5) 

When it is remembered that the potentials acting due to different bonds will be 
simply related by coordinate rotations, this equation may be combined with (2.2), 
(2.3), and (2.4) to give a consistency relation from which both the effective potentials 
due to the nearest neighbour bonds and the configurational free energy may be found. 

When non-nearest neighbour potentials are present we shall represent these 
by a mean field or Einstein approximation as used by Henkel (1955). With these 
additional terms in both P2(rl>r2) and Pl(r1), the equations will be used exactly 
as before. 

We may expect the approximation to be most accurate when the effective 
potential due to anyone bond is small compared to the total effective potential 
that one atom moves in. This will imply that the approximation is better the greater 
the number of nearest neighbours. 

III. THE HARMONIC FREE ENERGY 

The model which we are going to treat is one where the nearest neighbour 
potential can be written as 

Ua = U~2)+U~)+U~4), 

where U~2) is a quadratic contribution, 

U~3) is a cubic contribution, and 

U<;) is a quartic contribution. 

We shall also limit the discussion to the case where the potential has cylindrical 
symmetry about the line joining the two nearest neighbour atoms. Then 

1 1 
U~2) = 2ul(p'Ar)2+~2[(Ar)2_(p'Ar)2], 

1 1 
U~3) = 3 !Yl(P' Ar)3+ 3 !Y2(P' Ar)[(Ar)2-(p. Ar)2], 

111 
U~4) = 4 !(}l(P' Ar)4+ 4 !(}2(P' Ar)2[(Ar)2-(p. Ar)2]+ 4 !(}3[(Ar)2_(p' Ar)2]2, 

(3.1) 
where 

Ar = r 2-r1 

and P is a unit vector in the direction of atom 1 to atom 2. 

In particular, if the interatomic potential is a central potential, then we have 

Ul = lPii(a), 
1 . 

U2 = -a1P1(a), 
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'Yl = <1liii(a), 
3.1 3 1 

'Y2 = a<1l' (a)-a2<1l (a), 

01 = cplV(a), o = ~<1liii(a)_12<1lii(a)+ 12<1li (a) 
2 a a2 a3 ' 

3.. 3· o = -<1l"(a) - -<1l'(a) 
3 a2 a3 ' (3.2) 

where a is the nearest neighbour distance between atoms. 

Let us first solve the Bethe approximation equations ignoring U~3) and U~4). 
If now we use a coordinate system such that two atoms lie on the x-axis we have 

Ub2)(r1,r2) = ial(x2-xl)2+ia2[(Y2-Yl)2+(Z2-Z1)2]. (3.3) 

Let the effective potential due to a bond in the direction of the unit vector p be 

lJ'(r1) = trJl(p·r1)2+trJ2[(r1)2_(p·r1)2]+1]o· (3.4) 

Then we have 

L lJ'(r1) = h(xi+yi+zi)+q1]o, (3.5) 
p 

where q is the number of nearest neighbours and 

x = tq[ 1]1 + 21]2]. 

If non-nearest neighbour potentials are present then this last equation will be 
replaced by 

x = tq[1]1+21]2]+K, (3.6) 

where K is the contribution of the non-nearest neighbour potentials treated in an 
Einstein approximation. 

The other quantity we need is 

L'lJ'(rl) = UX-1]1]xi+UX-1]2]M+zi)+(q-1ho· (3.7) 
p 

When equations (3.3), (3.5), (3.7) are substituted into the consistency 
conditions (2.2), (2.3), (2.4), and (2.5) we obtain 

where 

1]1 = al -ai/AI' 

1]2 = a2-a~/A2' 

(31]0 = Hln Al/X+2In A 2/X}, 

(3Fc = ! In{(3X/27T}+q(31]o, 

Al = X-1)l +al' 

A2 = X-1]2+ a2· 

(3.8) 

(3.9) 
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The distribution functions are given by 

P2(rV r2) = (1/27T)(Ai-ui)t exp{ -1,S[AIXi-2uIXIX2+AIXm 

x(I/27T)(A~-u~)t exp{ -1,S[A2yi-2u2YIY2+A2ym 

X (1/27T)(A~-u~)t exp{ -1,S[A2zi-2u2z]z2+A2zm, 

Pl(r1) = (X/27T)3/2 exp{ -l'sx[xi+yi+ziJ). 

273 

(3.10) 

(3.11 ) 

In order to obtain the total free energy from the configurational free energy 
we must add the contribution from the kinetic energy of the atoms, 

! In{27Tn2,S/m}, 

to give the harmonic free energy as 

,SFH =! In ,S2n2X/m+tq{ln Al/X+2In A2/X}. (3.12) 

From the harmonic free energy we may calculate the Gruneisen constant, y. 

o In w 
y = - olnv' 

where ware the mode frequencies of the lattice. Now the classical free energy is 

and so we have 
,SFH = 3 In ,Snw, 

y = -tv ;v[,SFHJ 

= -~a!['sFH]. 

In terms of the Bethe approximation this may be evaluated if we write the relations 
for the effective potentials (3.8) in the equivalent form 

2/X = 1/(X-?h)+I/(X-1]1 +2ul)' 

2/X = 1/(X-1]2)+I/(X-1]2+2u2)' 

X = lq[1]1+ 21]2J+K, 

and the harmonic contribution to the free energy as 

,SFH =! In ,S2n2X/m+!q{ln(X-1]I)+ln(X-1]1 +2u1)+2 hI(X-1]2) 

+2 hI(X-1]1+2ul)-6 hI X}. 

(3.13) 

(3.14) 

If now we substitute the expression for X into this equation and consider it as an 
equation in 1]1 and 1]2 we find 

o,SFH = 0, 
01]1 

o,SFH = 0, 
01]2 
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which allows us to obtain 

a d 
Y = -- -[{3FHJ 

9 da 

= !L{-adu1/da 2 adu2/da }_!!:... dK 
18 X-1]1+2u1 X-1]2+2u2 6X da· 

IV. THE ANHARMONIC FREE ENERGY 

(3.15) 

The anharmonic contribution to the free energy can be found in the same 
manner. The Bethe approximation equations can be expanded in a perturbation 
series which gives the desired contribution to the free energy: However, an approach 
which gives an identical result and which is somewhat easier may be used. This 
approach uses the fact that the Bethe approximation gives an exact answer for a 
pseudo lattice which consists of non-intersecting chains of atoms (cf. Domb 1960). 
As this is so we can use the usual expansion for the anharmonic contribution to the 
free energy only applied to this pseudo lattice. This gives us at once 

F)tir = iq< Ub4»H, 

F<J.-J.) = -tq{3~ < Ub3) U~3»H' 
a 

(4.1) 

(4.2) 

where the subscript 0 refers to a particular pair of atoms in the lattice and the 
subscript u is summed over all pairs of atoms in the lattice. The bracket < )H means 
an expectation over the probability function for all atoms calculated as if they 
had only harmonic forces between them. 

The expression for F)tir can be evaluated immediately as the expectation 
reduces to an integral over the two-particle probability distribution function. Hence 

{3F)tir = ~-q{3 If Ub4)(rvr2)p2(rvr2)d3rld3r2· (4.3) 

On substituting (3.1) for U(4) and (3.10) for P2 we obtain 

(4) _ fJ.{~ 01 ~ 02 ~ 03 } 
{3FAH - {3 4 (A1+u1)2+6 (A1+u1)(A2+U2)+3 (A 2+u2)2 . (4.4) 

The equation for F<J.-J.) cannot be evaluated as straightforwardly as F)tir for 
the expectation does not immediately reduce to an integral over the two-atom 
distribution function. We can, however, reduce the evaluation of F<J.-J.) to that of 
a separate integral equation and then an expectation over the two-atom di~tribution 
function. Firstly, imagine that the integrals involved in the expectation have been 
taken over all atoms except the two atoms in the pair we have labelled u = o. 
Then, remembering that the Bethe approximation is equivalent to an exact evaluation 
over this lattice of non-intersecting chains, we may write 

{3F<J.-J.) = _q/4{32{<Ub3)(rVr2)Ub3)(rVr2)H 

+~' <8i (r1) Ub3)(rVr2)H+~' <Ub3)(rVr2)8j(r2)H}. (4.5) 
i j 

Here 8i (r1) is the effect of all the terms in ~<Ub3)U~» (equation (4.2)) where the 
a 



ANHARMONIC FREE ENERGY 275 

pairs of nearest neighbour atoms a lie in chains which join atom 1 through the 
nearest neighbour bond i. 

If now we consider the process of taking the integrals and the summation 
involved, then we see that (Ji satisfies the integral equation 

f [~' (Ji(rl )+ Ub3)(ri,r2)]p2(rVr2)d3rl = (JO(r2)PI(r2)· 
i 

(4.6) 

Substituting equation (3.1) for U(3) and equations (3.10) and (3.11) for P2 and PI 
we may solve this integral equation to give 

(J()- {(AI-al )3(. )3+3[AI-aIJ[AI+2aIJ(.)} 
i r I - YI A3 3 P r I A3 3 P r I 

l-al l-al 

+ { (AI-al)(A2-a2)2( . )[( )2_( '. )2] 2[AIA2+aIA2-2ala2J( . )} 
Y2 A2A 2 P r 1 r l P r 1 + A2A 2 P r l . 

2 1-~~ 2 l-~~ 

(4.7) 

Here p is a unit vector directed along the bond i towards atom 1. . 
When this is substituted into equation (4.2) we obtain, after some algebra, 

{3F<fii> = _9c{21 [AI-aiJ 3 +Y~ [3A1A2-a2A1+al~!2-3aI2a2J}. (4.S) 
{3 4 [AI +a1J[Al -al J IS [AI +ad[A2+a2][A2AI-a2a1J 

Equation (3.12) for the harmonic free energy, together with equation (4.4) for the 
quartic contribution to the anharmonic free energy and equation (4. S) for the 
cubic squared contribution, gives the solution to the problem. 

V. ApPLICATION TO A FACE-CENTRED CUBIC CRYSTAL MODEL 

Maradudin, Flinn, and Coldwell-Horsfall (1961) have treated exactly a simple 
nearest neighbour model with central forces. They have, however, ignored all 
terms of order Ija (where a is the nearest neighbour distance) in the expansion of 
the potential given in equations (3.1) and (3.2). Hence in the model treated by these 
authors 

a 2 =K =0, 

a1 = <pH , (5.1) 

Y2 = 02 = 03 = 0, 

Y1 = <pili , 

01 = <piv. (5.2) 

When the relation (5.1) is substituted into relations (3.6), (3.S), and (3.9), 
which relate the effective potentials to the harmonic constants of the interatomic 
potential, we have 

a2 
1 

7)1 = a l - X-7)1 +a/ 

x = 4a1 , 
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as q = 12 in a face-centred cubic crystal. These may be easily solved to give 

7]1 = i al' 

x =iav 
and 

Al = 3al' 

(5.3) 

(5.4) 

(5.5) 

Substituting these in the relation (3.12) for the harmonic contribution to the free 
energy we obtain 

{f3 fi,2 27m .. } f3FH = tIn 2 m XS""l1 . (5.6) 

Maradudin, Flinn, and Coldwell-Horsfall obtained for the harmonic contribution 

f3F H = t In{f32: X 3· 385r[Jii}. (5.7) 

As V = 3'375, these two expressions agree to within 0·3%. 

When the relations (5.2), (5.3), (5.4), and (5.5) are substituted into the relations 
(4.4) and (4.8) for the anharmonic contribution to the free energy we obtain 

1{ 3 r[Jiv 3 [r[Jiii]2} 
f3F AH = f3 16 [r[Jii]2 - 52 [r[Jii]3 . (5.8) 

This may be compared with the relation obtained by Maradudin, Flinn, and 
Coldwell-Horsfall 

1{ 3 r[Jiv 172·3 [r[Jiii]2} 
f3F AH = fi 16 [r[Jii]2 - 3072 [r[Jii]3 . (5.9) 

The Bethe approximation then calculates the terms f3F<.tk exactly for this model 
and, as 3/52 = 177·2/3072, it calculates f3F<J.~) to within 3%. 

The approximation introduced by Ludwig (1958) has been compared with the 
above calculation by Maradudin, Flinn, and Coldwell-Horsfall and shown to calculate 
f3F<.tk exactly for this model and to underestimate the coefficient in f3F<J.~) by 16%. 
On the other hand, the mean field or Einstein approximation used by Henkel (1955) 
in the study of solid argon gives, when applied to this model, 

(4) _ 1 3 r[Jiv 
f3F AH - fi 32 [r[Jii]2' 

f3F<J.~) = o. 
It may be noted that these two errors tend to cancel. 

(5.lO) 

It is interesting to see whether or not the terms in 11a can be ignored in the 
expansion of the potential in equation (3.2). If all the terms for a central potential 
in this model are retained we obtain 

(4) 1{ 3 . 91r[Jr' 9 1 r[J"} 1 f3F AH = fi 16 r[JIV +8 a 11+8 Ci2 11 [r[Jii]2' 

f3F(3,3) = _1 {2.[r[Jiii] 2 + 45 ,!,[r[Jii]2}_1_. 
AH f3 52 64 a2 [r[Jii]3 (5.11) 
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Now, in order to .estimate the importance of these terms, we shall substitute a 
Morse potential given by 

qj(r) = ~ ~2[exp{ -2£1C:a) }-2 exp{ _£1(r:a)}]. 

With this potential we have 

qji(a) = 0, 

qjii(a) = Dja2, 

qjiii(a) = -3£1Dja3 , 

qjiv(a) = 7 £12Dja 4• 

Substituting this into (5.11) gives 

QF(4) = _1 {21 £12- 27 £1+~} 
t' AH iJD 16 8 8 ' 

QF(3,3) = _~{27 £12+45 } 
t' AH iJD 52 64 . 

(5.12) 

(5.13) 

(5.14) 

Using a typical value of A = 5 we see that iJF~k drops from (ljiJD)(525jI6) 
if only the first term is retained to (ljiJD)(273jI6) if all terms are retained. It would 
appear then that the term (lja)qjiii cannot be ignored. The terms of order Ija2, 
however, do not contribute strongly. It may be noted that, because of the term 
(lja)qjiii, the total anharmonic free energy will be negative for this model when 
£1<4·12. 

VI. ApPLICATION TO A BODY-CENTRED CUBIC CRYSTAL MODEL 

The anharmonic cOJ}.tribution to the specific heat of sodium has been treated 
by both Stern (1958) and Leibfried and Ludwig (1961). Both these authors use 
models based on generalized coupling parameters. However, a simple model is 
suggested by the work of Fuchs (1935) in his calculation of the elastic constants. 
This work suggests that the forces between atoms in the alkali metals are central 
forces but that the contribution of the conduction electrons must be taken into 
account separately in calculating the elastic constants and the specific heat. This 
has been the basis of several calculations of the vibratory spectrum of these metals 
(cf. de Launay 1956). The elastic constants of the metal are then related to the 
elastic constants of the lattice by the Fuchs relations 

, , 
cn -C12 = cn -C12 , 

C44 = C44 • (6.1) 

The contribution of nearest neighbour forces is relatively more important for 
effects which depend on higher order terms in the interatomic potential. In the 
model studied here we shall assume that nearest and non-nearest harmonic forces 
are important, but that only the nearest neighbours need be considered in calculating 
the anharmonic contribution to the specific heat. The magnitude of the harmonic 
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potentials may then be estimated from the elastic constants. The assumption will 
then be made that the interatomic central potential is a Morse potential. This will 
allow us to calculate the anharmonic contribution to the specific heat after fitting 
the Morse potential to the observed Gruneisen constant. 

The harmonic constants are then taken to be ~ and aa' where the potential 
between non-nearest neighbours is taken as taa(p·Ar)2. p is a unit vector to the 
non-nearest neighbour and a1 is given in (3.1). It is assumed that a2 = o. a1 and 
aa are then related to the elastic constants (cf. de Launay 1956) by 

3ta1/3a = C44, 

3ta2/a = cll -C12, (6.2) 

where a is the nearest neighbour distance. Put 

aa = rav 
where 

r = (Cll-C12)/3c44. (6.3) 

The effective potentials are then given by equations (3.6) and (3.8), which in the 
p~esent case give 

7]1 = a1-aV(X-7]1+a1)' 

x = 87]1/3 + 2aa, (6.4) 

as there are eight nearest neighbours and six next-nearest neighbours in a body
centred cubic lattice. Solving these equations 

7]1 = (3a1/5 )[I-r+{(I-r)2+ lOr/3}!]. (6.5) 

For the numerical data on the elastic constants of sodium we use the figures 
of Quimby and Siegel (1938) and of Siegel and Quimby (1938) linearly extrapolated 
to zero by Leibfried and Ludwig (1961) (for the justification of this procedure see 
Leibfried and Ludwig). 

These figures are 
Cll = 0 ·65 X 1011 erg cm-3, 

C12 = 0·49 X 1011 erg cm-3, 

C44 = 0·665 X 1011 erg cm-3, (6.6) 
which give 

r = 0·0804. (6.7) 

Substituting into equation (6.5) for the effective potential we obtain 

7]1 = 0·50a1' 

x = 1· 33av 

A1 = 1· 83a1· (6.8) 
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When these are substituted into equation (3.12) for the harmonic free energy 
we obtain 

fJFH = i In{fJ2: 2 . 46u1 }. (6.9) 

The anharmonic energy can now be calculated using the relation between 
the potentials for a Morse potential as given in equation (5.13) and the expressions 
for the anharmonic contributions to the free energy as given in equations (4.4) 
and (4.8). These give us 

PF(4) = ~[1'75A2-6'40A+4'29] 
f-' AH fJD ' 

PF(3,3) = -~[1.03A2+5'21] 
f-' AH fJD ' 

which, when added together, give 

fJFAH = fJ~[ 0.72A2_6.40A-0.92]. (6.10) 

Combining this equation with equation 

Cv/k = --fJ2;;2[fJF ], (6.11) 

we obtain the specific heat at constant volume per particle divided by Boltzmann's 
constant as 

Cv/k = 3+ (l/fJD){ -1·44A2+12·8A+1·84}. 

Differentiating, this expression leads to 

d~(~v) = i{ -1.44A2+12.8A+l.84}. (6.12) 

In order to complete the evaluation of this expression for sodium, we know 
that D is given by equations (5.13) as 

D = a2u1 • 

When this is combined with the equations for the elastic constants (6.2) we have 

D = 3ta3c44. (6.13) 

Using the value of the elastic constants, extrapolated linearly to zero temperature 
(6.6) and the nearest neighbour distance (Leibfried and Ludwig 1961) 

a = tx3 i X4·206 X 10-8 em, (6.14) 

we obtain the value 

D = 5·57 X 10-12 erg. (6.15) 
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In order to obtain A we shall relate it to Gruneisen's constant. Using equation 
(3.15), together with 

gives 

dal = 3Aal' -ada 

da2 a--da - aI' 

dk = 0, 
da 

a2 = YJ2 = 0, 

4 Aal 8 a l 
y=- -. 

3 X-YJI+2a1 9 X 

Substituting the numerical values given in (6.8) 

y = 0·472A-0·670. 

Using the value y = 1·00 given by Leibfried and Ludwig, 

A = 3·54. 

Substituting this value and the value of D given by (6.15) into (6.12) gives 

d~(~v) = +6·95xlO-4 deg-l . 

This value is similar to the value 

d~( ~v) = 6 ·43 X 10-4 deg-l 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

obtained by Leibfried and Ludwig (1961), who used generalized coupling parameters 
instead of a simple model potential. Stern (1958) obtained 

d~(~v) = -1'80x10-4 deg-l . 

However, none of these values are extremely close to the measured value of 

d~(~V) = +20·9xlO-4 deg- l • (6.20) 

The experimental value (6.20) was obtained from Dauphinee, MacDonald, and 
Preston-Thomas (1954) who measured 

~(C'P) dT k = 27·7 X 10-4 deg-l . 

As we have calculated the lattice contribution to the specific heat at constant volume 
we must subtract from this the thermal expansion contribution 

9Ky2kjV2 = 6'2XlO-4 deg-l 
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and the electronic contribution 

0·6 X 10-4 deg-1• 

These figures are also taken from Leibfried and Ludwig. 

VII. CONCLUSION 

281 

The Bethe approximation can be used to evaluate the anharmonic contribution 
to the face energy of a lattice. When applied to the exactly evaluated face-centred 
cubic model of Maradudin, Flinn, and Coldwell-Horsfall the approximation produces 
an answer within 3% of the exact value. It is found that if the forces in the lattice 
are actually central forces then the anharmonic contribution to the free energy is 
quite different from that predicted by the model of Maradudin, Flinn, and Coldwell
Horsfall. 

The approximation has been used to evaluate the anharmonic contribution 
to the specific heat of a simple model of sodium. Only fair agreement with experiment 
is obtained. 

The approximation may be extended to other types of lattices if this is required. 
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