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Summary 

The temperature dependence of the elastic constants of a cubic lattice are 
calculated in the classical limit by means of a Bethe approximation. The expressions 
so derived are then applied to a simple model of some metals. The agreement 
between the derived and measured temperature dependence of the elastic constants 
of these metals is satisfactory. 

I. INTRODUCTION 

In an earlier paper (Lloyd 1964, hereafter called I) the classical anharmonic 
contribution to the free energy of a lattice was evaluated using a Bethe approximation. 
This approximation may be viewed in either of two ways. Firstly, one can consider 
each atom in the lattice moving in an effective potential due to the other atoms. This 
effective potential is then determined in a self-consistent manner. Secondly, the 
approximation can be viewed as replacing the true lattice structure by a pseudo
lattice composed entirely of non-intersecting chains of atoms. In this respect the 
work is closely related to that of Barker (1961, 1962) and Lloyd and O'Dwyer 
(1963a, 1963b). The approximation is also entirely analogous to that of Bethe (1935), 
who studied the Ising model of ferromagnetism, with the exception that an atom 
has a continuum of possible positions while an Ising model spin may be only up 
or down. The pseudo-lattice of non-intersecting chains, which this approximation 
solves exactly, is known as a Bethe lattice. In I it was shown that this approximation 
was quite good when applied to a model which had been previously evaluated 
numerically by Maradudin, Flinn, and Coldwell-Horsfall (1961). Now the expression 
for the classical free energy, as derived in I, can be used to obtain the temperature 
dependence of the bulk modules of the solid in the high temperature limit. It cannot, 
however, be used to obtain the temperature dependence of the individual elastic 
constants cn ' C12' and C44 • The reason for this is that the cubic lattice loses its 
symmetry under an arbitrary strain and this symmetry was implicitly assumed in the 
solution obtained in I. The purpose of the present paper is to derive the expressions 
for the temperature dependence of the elastic constants of a cubic lattice in the 
Bethe approximation. 

The following work is also closely related to that of Born and his collaborators 
(Born 1939, 1943; Born and Bradburn 1943; Bradburn 1943; and Gow 1944), 
who have studied the equation of state of a lattice. To do so they introduced the 
"Born approximation" in which a lattice mode frequency squared, w 2 is replaced 
by its average value w 2• This approximation is equivalent to an Einstein approxi
mation and as such it has been extended to lower temperatures by Henkel (1955) 
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and Zucker (1958). The approximation has also been used by Leibfried and Hahn 
(1958), Ludwig (1958), and Leibfried and Ludwig (1961) to discuss the temperature 
dependence of the elastic constants. These authors use the Born approximation 
to evaluate the generalized Gruneisen constants of Davies and Parke (1959). Now 
the Born or Einstein approximation is the lattice dynamical analogue of the mean 
field approximation in the Ising model of ferromagnetism (cf. Domb 1960). By 
analogy with the Ising model the Bethe approximation is then the next logical 
approximation to investigate. However, while the Bethe approximation gives a 
significant improvement over the mean field approximation for the Ising model 
and a significant improvement over the Einstein approximation in evaluating the 
anharmonic correction to the specific heat, it is unlikely to cause much change in 
the calculated temperature dependence of the elastic constants. The adequacy of 
the Born approximation for this purpose has been discussed both by Bradburn 
(1943) and Leibfried and Ludwig (1961, Appendix, p. 439). The expressions derived 
below for the temperature dependence of the elastic constants may be used as a 
next higher approximation to test the accuracy of the Born approximation for a 
given model of the interatomic forces. 

The expressions derived in the present paper are applied to a simple model 
of a metal. In particular they are applied to sodium, where the agreement with 
experiment is only marginal, and to the noble metals, copper and silver. Here the 
agreement with experiment is good. 

II. THE BETHE ApPROXIMATION 

The classical free energy of a pseudo-lattice of non-intersecting chains (the 
Bethe lattice or a Cayley tree characterized by the coordination number, cf. Domb 
1960) with nearest neighbour forces, can be solved exactly. The reason for this is 
that as the chains do not intersect we can uniquely divide the atoms of the lattice 
into those to the left of a given nearest neighbour pair (1, 2), and those to the right; 
then any configurational integral taken over an atom to the left of atom 1 will 
lead to a contribution which is a function of the coordinates of atom 1 and not of 
both atom 1 and atom 2. If then U(qv q2) is the nearest neighbour potential, 
'l'(ql) is the contribution to the potential on atom 1 due to taking the configurational 
integral over all chains which join atom 1 through a given nearest neighbour bond, 
and ~/'l'(ql) is the potential on atom 1 due to taking the configurational integral 
over all atoms to the left of atom 1, we have 

e- 2f3F P2( qv q2) = exp{ - ,8[~1 'l'( ql) + U (qv q2) + ~' 'l'( q2)]}' (2.1) 

Here F is the configurational free energy per particle, ,8 = 1(kT is the inverse 
temperature and P2(qV q2) is the probability distribution function of the nearest 
neighbour pair of atoms (1, 2). Similarly, if we now only consider one atom we 
obtain 

e- IlFpl(ql) = exp{-,8~'l'(ql)}' (2.2) 

where Pl(ql) is the probability distribution function for one atom. ~'l'(ql) is the 
potential induced on atom 1 in the manner described above for two atoms. The 
lack of a prime on the summation denotes that the contribution from the chains 
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which join atom 1 through atom 2 are to be included in the summation. Due to 
the relation 

I P2(ql' q2)d3q2 = Pl(ql)' (2.3) 

this leads to an integral equation from which both 0/( ql) and the free energy may 
be found. 

That the exact solution of the pseudo-lattice can be found leads to an approxi
mation for a real lattice by first replacing the interparticle potential by an approximate 
nearest neighbour potential and then finding the exact solution of the pseudo-lattice. 
This has been used to evaluate the anharmonic contributions to the specific heat in I. 

In order to find the elastic constants we need to know the free energy to the 
second order in strain. Owing to surface effects, the static deformation method 
can lead to difficulties in the evaluation of the elastic constants (of. Born and 
Huang 1956), but this is not so for central forces and we shall limit ourselves to 
this case. 

Putting the interparticle potential as U", +8 U "" where a labels the nearest 
neighbour pair of atoms, and the configurational free energy as Fo+8F, where 
8U", and 8F are the strain-dependent parts, we have 

exp -f3N{Fo+8F) = f ... f {exp -f3 2 (U ",+8U ",)} d3Nq. 
a 

Expanding this equation gives 

8F = ~ 2 <8U",>-!f3~ 22 {<8U",8U">-<8U,,,><8U,,>}, (2.4) 
a a " 

where the expectation < ... > is over the "unperturbed" distribution ~ U "'. The 
expectation <8U "'> is then a 

<8U",> = I I 8U",(ql' Q2)P2(QV Q2) d3qld3q2 (2.5) 

and P2(QV Q2) is known from the solution of the unperturbed case. 

By use of the approximation explained above, terms of the form 

T", = 2 {<8U",8U">-<8U,,,><8U,,>}, (2.6) 

" 
which occur in (2.4), may also be evaluated. It may be noted that this expression 
is not of the order N even though it involves a summation over all nearest neighbour 
pairs y. The reason for this is that unless the pair a is close to the pair y then 

<8U",8U,,> = <8U",> <8U,,> 

and no contribution is given to the summation. 

For the Bethe lattice the term T", may be reduced to the solution of an integral 
equation. To do so we write 

T", = 2 «8U",-<8U",>)(8U,,-<8Uv»))· (2.7) 
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Again, if the atoms of the pseudo-lattice are divided into those to the left of the 
pair a and those to the right of the pair a, then we may write 

TIZ = «8UIZ-<8U,,»)(~1 <1>(ql)+8UIZ-<8Uct)+~1 <1>(q2»)' (2.8) 

Here ~' <1>(ql) is the contribution of all members of the summation over y which 
have y to the left of the pair a, and are on chains which join atom 1 through differing 
nearest neighbours. This expectation may be then taken as in (2.5). If we consider 
the detailed process of taking the configurational integral and the summation we 
see that <1>(ql) satisfies the integral equation 

J {~I <1>(ql)+8Uy (ql' q2)-<8Uy )}P2(ql' q2) dSql = <1>(q2)Pl(q2)' (2.9) 

The elastic constants may then be found by 

(i) forming the change in the potential energy on strain, 8 U ct; 

(ii) calculating the free energy to second order in strain by means of (2.4), 
which is in turn evaluated using (2.5), (2.8), and (2.9); 

(iii) differentiating the free energy with respect to the strain components in 
order to obtain the elastic constants. 

III. EXPANSION OF THE POTENTIAL 

Let cjJ(r) be the central nearest neighbour potential for the pair of atoms of 
interest. We shall expand cjJ(r) about r = ap, where a is the equilibrium nearest 
neighbour distance and p a unit vector from atom 1 to atom 2. When the atoms 
are displaced and the lattice is strained we have 

r = ap+ae'p+Aq, (3.1) 

where e is the strain tensor and Aq = q2-ql is the displacement of the atoms 
from the strained equilibrium positions. This then gives 

r2 = a2+2a2p·e·p+2ap.Aq+a2p·e·e·p+2aAq 'e'p+Aq ·Aq. (3.2) 

The potential may now be expanded about cjJ(a). Only terms that are even 
in p have been retained, as when the summation over all pairs of atoms is taken 
terms which are of odd order in p will vanish. The result of the expansion to the 
necessary order (to give all terms which contribute to the elastic constants a term 
linear in temperature) is 

cjJ(r) = cjJ(a)+K1ap'e'p 

+ {tK1ap 'e'e ·p+!K2a2(p·e 'p)2} 

+{tK2a2(p'e .p)(p 'e'e'p) +iK 3aS(p'e .p)S} 

+ {ta-1 K1(Aq ·Aq)+!K2(p·Aq)2} 

+{tK2(p ·e·p)(Aq ·Aq)+K2(p·Aq)(Aq ·e·p)+!K3a(p ·e·p)(p·Aq)2} 

+UK2(p'e'e'p)(Aq ·Aq)+!K2P(Aq ·e·p)2 

+tKsa(p ·e·p)2(Aq· Aq) +tKsa(p'e 'e'p)(p· Aq)2 

+Ksa(p· e' p)(p. Aq)(Aq· e .p) +tK4a2(p'e' p)2(p. Aq)2}, (3.3) 
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where 

KI = tfo'(a) 
K2 = tfoH(a)-a-Itfoi(a) 

Ks = tfoill(a)-3a-ItfoH(a)+3a-2tfo'(a) 

K, = tfo'V(a)-6a-Itfolli(a)+15a-2tfoH(a)-15a-stfo'(a). 

These terms give the following contributions to the free energy. 

1. tfo(a) is a constant term, independent of both strain and temperature. This gives 
a contribution to the dissociation energy of the lattice. 

2. Klap'e'p forms part of a contribution which must vanish if "a" is the equilibrium 
distance. This is the equilibrium distance at T = 0 classically, and in practice 
is the "linearly extrapolated to zero" distance (cf. Leibfried and Ludwig 1961). 

3. {!Kl ap·e·e·p+!K2a2(p·e·p)2} forms part of the contribution to the tempera
ture independent part of the elastic constants. 

4. {!K2a2(p·e·p)(p·e·e,p)+iKsaS(p·e·p)S} forms part of the contribution to the 
third-order, temperature-independent elastic constants. 

5. {!a-l KI(Aq' Aq) +iK2(P' Aq)2} is the strain-independent harmonic term which 
gives rise to the unperturbed probability distribution. This part has been treated 
in I and gives rise to the distribution 

P2(ql' q2) = N exp{ -!,B[ql' A 'ql-2ql ·(J.·q2+q2· A 'q2])' (3.4) 

where the tensor A is given by 

A = AIPp+A2(I-pp), 

and 

(J. = aIPp+a2(I-pp). (3.5) 

Explicit expressions for Al and A2 are given in 1. 

6. {lK2(p·e·p)(Aq ·Aq)+K2(p·Aq)(Aq ·e·p)+!Ksa(p·e,p)(p·Aq)2}. This term con
tributes to the free energy in two ways. When substituted in (2.7) to first 
order it gives a contribution to the free energy proportional to T and to 
(en +e22+eS3)' This term then gives the thermal expansion. The result is identical 
with that obtained in 1. When this term is substituted in (2.7) to the second 
order, we obtain a contribution to the elastic constants which is proportional 
to temperature. As this contribution depends on the third-order differential of 
the potential squared, we shall denote it by C<3,S). 

7. The last part of the expansion (3.3) need only be substituted in (2.7) to first 
order to obtain a contribution to the elastic constants which is proportional to 
temperature. As this depends on the fourth-order differential of the potential 
we shall denote this contribution by C<4). 

IV. EVALUATION OF C<4) 

In order to evaluate the fourth-order part of the elastic constants we form 
the first-order contribution to the free energy (2.7) 

SF = ~ 2: <Stfol1.), 
B 
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S~(J, = tK2(p·e·e·p)(Aq ·Aq)+tK2(Aq ·e·p)2+!Kaa(p·e·p)2(Aq ·Aq) 

+Kaa(p·e·p)(p· Aq)(Aq ·e·p)+!K4a2(p ·e·p)2(p. Aq)2. 

As all atoms are equivalent (2.7) may be altered to 

SF = t 2: <S~(J,>. 
p 

Using the distribution (3.4), (3.5) the expectation may be taken to give 

529 

(4.1) 

SF = t 2: {~A1~UJ(tKaa+tK2)(p·e.e·p)+(tK4a2+!Kaa+tK2)(p·e.p)2J 
p 

2 1 [ J' +~ A 2+u2 K 2(p·e·e·p)+(!Kaa-!K2)(p·e·p)2 . (4.2) 

The summation over p may now be taken. We use the formula 

2:PiPi = qEo' 

P 

2: PiPiPiPi = qEv 
P 

2: PiPiPiPi = qE2· 

P 

(4.3) 

Here q is the coordination number and we have for a face-centred cubic (f.c.c.) lattice 

q = 12, EO = 1, E1 = -1, 

while for a body-centred cubic (b.c.c.) lattice we have 

q = 8, EO = t, 

The summation is then equated to 

1 
E1 =9", 

1 
E2 = 12, 

E2 =t· 

(4.4) 

(4.5) 

SF = t V A{4~(41 +e~2+e~a) +24~(e22eaa+elleaa+elle22)+4c~~(e~a+e~a+42)}' (4.6) 

where V A is the volume of one atom. 

When this is done the final result is 

{
II 

4~ = Vq r:I A2+EO (Kaa+K2)+A2E1 (K4a2+5Kaa+2K2) 
AI' 1 u1 1 +u1 

2Eo E1 } 
+-A + K 2+ A + (Kaa-K2) ' 

2 u2 2 u 2 
(4.7) 

c~~ = V~(j{A:~U1(K4a2+5Kaa+2K2)+ A2~U2(K3a-K2)}' (4.8) 
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c~~ = V~,8{A;~al(Kaa+K2)+ A:~al(K4a2+5Kaa+2K2) 
EO K E2 } 

+A + 2+A + (Kaa-K2)· 
2 a2 2 a2 

(4.9) 

V. EVALUATION OF dB,a) 

The evaluation of the cubic squared contributions are not as straightforward 
as the evaluation of d4). In order to find (2.7) we have 

SF = -t,8~ 2: 2: {<S~"S~1'>-<S~,,> <S~1'>}' 
a l' 

with 

S~" = tK2(P ·e·p)(Aq ·Aq)+K2(p·Aq)(Aq ·e·p)+!Ksa(p·e·p)(p·Aq)2. (5.1) 

We must first solve the integral equation (2.5) and reduce (2.3) to (2.4). Equation 
(2.3) is closely related to (2.7) if 0" = S~", ~O = S~1" By selecting one atom and 
nearest neighbour direction p for y and calling this "0" we have 

SF = -1,8 2: {2: «S~"S~o>-<S~,,> <S~o»}' (5.2) 
p a 

or 

SF = -1,8 2: ([~I <1>(ql)+S~O(ql' q2)-<S~0>+~1 <1>(q2)][8~0(ql' q2)-<8~0>]}. (5.3) 
p 

<1>( q) satisfies the integral equation 

f [~I <1>(ql)+S~(ql' q2)-<8~>]P2(ql' q2)dSQl = <1>(q2)Pl(q2)' (5.4) 

The integral equation (5.4) may be solved with <1>(q) as the sum of a harmonic 
function and a constant. It may be noted that the constant is irrevelant to the 
determination of 8F and will be ignored. A solution for the harmonic part of <1>( q) 
may be found by substituting 

Here 

<1>(q) = {kolelq·q+k1q·e·q+k2q·e·q 

+kslel(p .q)2+2k4(p·q)(q 'e'p) 

+2ks(p·q)(q ·e·p)+k6(p·e·p)(q .q) 

+k7(p'e .p)(p. q)2+ks(p.e .p)(p. q)2}. 

lei = en +e22 +eSS 

and e is the diagonal part of the strain tensor e, that is, 

[
en 0 OJ 

e= 0 e22 0 

o Oe33 • 

(5.5) 
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This is a tensor under the restricted group of rotations corresponding to cubic 
lattice symmetry. 

The summation over the nearest neighbour dirertions, excluding the direction p, 
gives 

where 

~'!J>(q) = {l0Ielq·q+l1q·e·q+l2q·e·q 

-k3lel (p. q)2-2k4(P .q)(q ·e·p) 

-2k5(P ·q)(q·e ·P)-k6(P ·e·p)(q .q) 

-k7(P· e· p)(p. q)2-ks(p·e· p)(p. q)2}, (5.6) 

10 = (q-l)ko+q€ok3+q€ok6+q€2k7+q€2ks' (5.7) 

11 = (q-l)k1+2q€ok4+2q€2 k7' (5.8) 

l2 = (q-l)k2+2q€ok5+q(€1-3€2)k7+q(€1-€2)ks. (5.9) 

Substituting equations (5.6) and (5.1) into the integral equation (5.4), and 
using the distribution (3.4), gives nine algebraic equations for the nine unknowns 
ko . .. ks. When these are solved we obtain 

ks = t(1-r2)2(1+r~)-1K2' 
and 

( 2h-r2)r2 2(r1-r2)2 (1-r1r2)} 
11 1-(q-l)ri-q€o 1 +r1r2 q€2 1 +r~ . 1 +r1r2 

= q€2(K 3a+3K2)(I-r1)2 +qK {(€ -2€ )(1-r1)(I-r2) 
1 'r2 2 0 2 1 + 1 r1r2 

(1-r2)2}. 
€2 1 +r~ 

(5.10) 

(5.11) 

(In order to avoid confusion the denominator has not been transferred to the 
right-hand side.) 

k - (r1-r2)r2l + (l-r1)(I-r2)lK 
4 - l+r1r2 1 l+r1r2 2 2' 

(5.12) 

k - (r1-r2)2 (1-r1r2)l +l(1-r1 )2(K a+3K )-K (1(1--r2)2 +(l-r1)(l-r2)} 

7 - l+r~ . l+r1r2 1 2 l+r~ 3 2 2 2 l+r~ l+r1r2 ' 
(5.13) 

l { 2 2(r1-r2h (r1-r2)2 (1-r1r2)} - k 
2 1-(q-1)r2-q€o 1+ q(€1-€2) 1+ 2 • 1+ - q(€1- 3€2) 7' r1r2 r1 r1r2 

(5.14) 

(r -r2)r2l 
1 2' k5 = 1+r1r2 

(5.15) 

k _ (r1-r2)2 (1-r1r2)l 
s - l+r~ 1+r1r2 2' 

(5.16) 

lor 1-(q-l)ri-q€o~~;~i} = q€ok 6+q€2 k7+q€2 kS' (5.17) 
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r2-r~l 
1_ -0' ka = l+r~ (5.18) 

where 

r l = aI/AI> r2 = a2/A 2' (5.19) 

These equations solve the integral equation. Now we substitute z,'if> 
(equation 5.6) into the equation (5.3) for SF, take the expectation and the summation 
over p, and then separate into the elastic constants, as was done for C<4). The result is 

(a 3) _ q {Kaa+3K2 
cll: - - V Af3 (AI +al)2 X 

[Eo(lo-ka) +El(Kaa+3K2+ll +l2-2k4 -2k6-k6-k7-ks)] 

2K2 
+,. , \I. , J(EO-El )(K2 +ll +l2-k4-k5)] 

+, A X,2 ,.[Eo(2lo+ll+l2)+El(2K2-ll-l2-2k6)]}' 

(a.3) _ __ q_{Kaa+3K2 
C12 - V Af3 (AI +al)2 X 

[Eo(lo-ka) +E2(Kaa+3K2+ll +l2-2k4-2k5-k6-k7-kg)] 

2K2 K l +, A , \I A , J( -E2)( 2+ 1 +l2-k4-k6)] 

+, . X,2 ,.[Eo(2l0 +ll +l2)+E2(2K2-ll-l2-2k6 )]}, 

c~l) = -V~,8{~~a:~~2[E2(Kaa+3K2+ll-2k4-k6-k7)] 

+, A , 2~2. , ,[(tEO-E2)(K2+ll -k4)] 

K2 } +, A , ,.[E2(2K2-ll -2k6 )]· 

VI. FURTHER CONTRIBUTIONS TO THE TEMPERATURE DEPENDENCE 

OF THE ELASTIC CONSTANTS 

(5.20) 

(5.21) 

(5.22) 

If we desired to calculate the temperature dependence of the isothermal 
. elastic constants, measured under conditions in which the external hydrostatic 
pressure was adjusted to maintain a constant volume independent of temperature, 
then the result would be the sum of the two contributions already calculated. 
However, we desire to calculate the temperature dependence of the adiabatic elastic 
constants, measured under conditions of a fixed external pressure so that thermal 
expansion takes place. This gives rise to three further contributions. 
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The difference between the adiabatic and isothermal elastic constant will be 
denoted by C(D) and for a cubic lattice we have 

cCfi) = c~~) = 3y2jf3V A' } (6.1) 
C4~) = 0, 

where 
y = a VA (Cn +2C12)jcv 

is the Gruneisen constant. 

The effect of the thermal expansion can be broken into two parts. The first 
part is due to the volume expansion. This gives a contribution 

c~y) -3aTcW, (6.2) 

where c~o/ is the temperature-independent part of the elastic constants and a is the 
linear thermal expansion. 

The thermal expansion also causes the value of the harmonic constants at 
the equilibrium distance to alter. This gives a contribution 

fH) _ 1 L 03 F {" T} CiJ•mn - -V ~ .. ~ ~ aur• . 
A ue"uemnuer• 

r.8 

The appropriate part of the free energy to use is 

of = t L {tK2a2(p.e.p)(p.e.e·p)+tK3a3(p.e.p)3}. 
p 

In Voigt notation this gives the contribution 

4If.) = (qaTa2j2VA){El[K3a+3K2]+(Eo-El)K2}' 

4~) = (qaTa2j2 V A){ E2[ K3a+3K2]-E2K2}' 

c~I[) = (qaTa2j2VA){E2[K3a+3K2]+(!Eo-E2)K2}' 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

The total contribution to the temperature-dependent part of the adiabatic 
elastic constant is then 

Cij = C~4/ +C~~.3) +c~~) +c~y) +c~~[). (6.8) 

VII. APPLICATION TO SOME METALS 

In I an extension of a model due to Fuchs (1935) was used. In this model 
it is assumed that the conduction electrons give rise to a contribution to the free 
energy of the analytic form 

Fe = F1(V)+F2(V)T2+0(T3). (7.1) 

This is the same analytic form as given for the one-electron model. It is also 
assumed that short-range restoring potentials exist between the individual ions of 
the lattice. A model very similar to this has been used by Horton (1961) in order 
to discuss the thermal expansion of copper. However, the model must be treated 
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as phenomenological, since Daniels and Smith (1958) have shown that it is impossible 
to predict the pressure dependence of the elastic constants using this model. The 
harmonic part of the short-range potentials is taken to be adequately represented 
by a central force between nearest and next nearest neighbours. This has been 
the basis of several studies of the vibration spectra of metals (cf. de Launay 1956). 
If al is the harmonic constant for nearest neighbours and as that for second nearest 
neighbours, then the electronic contribution to the elastic constants may be 
eliminated to give 

al = tbc", as = lb(Cll -C12 ) (7.2) 

for a b.c.c. lattice. For a f.c.c. lattice we obtain 

al = bc", aa = !b(Cll -C12-C'4)· (7.3) 

Here b is the cubic cell parameter. 

In order to study the effect of anharmonicity on the elastic constants we 
make some additional assumptions. We assume that the anharmonic part of the 
potential can be adequately represented by a central nearest neighbour force. 
In addition we assume that the ratio of the derivatives of the potential are the 
same as for a Morse potential, which is the potential often used for a diatomic 
molecule. This then gives 

cfol1(a) = aI' } 

cfoiil(a) = -3(Aja)al' 

cfoiV(a) = 7(Aja)2al· 

(7.4) 

The form of the electronic contribution as given by (7. 1) affects neither the 
temperature dependence of the elastic constants nor the Gruneisen constant. The 
latter is given in I (for this model) as 

y = tq{aIAj2(AI +al)-alj3A2}· (7.5) 

The Gruneisen constant will be fitted in order to obtain A. The temperature
independent part of the elastic constants will be used to determine al and as. 

We have from I that 

where 

a2 =0. 

A2 = lq7) +iq' a3' 

Al = A 2-7) +al' 

7) = i al{(1-3asjal) +[(l-3asjal)2+30aajal]i} 

for a b.c.c. lattice and 

7) = tal{(l-aajal) +[(1-aajal)2+6aajal]i} 

for a f.c.c. lattice. 

(7.6) 

(7.7) 

With these assumptions the temperature dependence of the elastic constants 
of sodium and the noble metals, copper and gold, may be calculated. The elastic data 
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for these metals have been taken from Leibfried and Ludwig (1961), while the thermal 
expansion data have been taken from Collins and White (1964). The results have 
been set out in Table 1 in the form 

Cij = c~~)[I-DijkT], 

together with the experimental values, which were also taken from Leibfried and 
Ludwig. 

TABLE 1 

TEMPERATURE DEPENDENCE OF THE ELASTIC CONSTANTS 

The calculated results are expressed as Ci; = c~~)[l-Di;kT]. 
The experimental values are taken from Leibfried and Ludwig 

(1961). 

Metal Duk D12k D .. k 
(10-3 deg-1 ) (10-3 deg-1 ) (10-3 deg-1 ) 

Sodium 
(calculated) 1·204 1·450 1·814 
(measured) 0·69 0·65 1·26 

Copper 
(calculated) 0·237 0·163 0·274 
(measured) 0·24 0·15 0·38 

(0'34) (0,27) (0'35) 

Silver 
(calculated) 0·242 0·158 0·315 
(measured) 0·24 0·16 0·40 

It, can be seen that all the results for sodium are too high. A specific breakdown 
of the contributions to Dijk for sodium is 

DWk = -0·232 X 10-3 deg-l, 

D~l·3)k = +0·800 X 10-3 deg-l, 

D~I?)k = -0 ·171 X 10-3 deg-l, 

D~i)k = +0·205 X 10-3 deg-l, 

D~Iflk = +0·602 X 10-3 deg-l, 

while the other components, D12 and D44 , are in much the same ratio. The agreement 
in the case of sodium could be greatly improved by raising rpiV(a) above that predicted 
by the Morse potential. This would also tend to improve the agreement between 
the measured rate of change of specific heat with temperature and that predicted 
in 1. 

In the case of the noble metals, copper and silver, the agreement betweell 
the predicted results and the experimental results is seen to be quite good. Leibfried 
and Ludwig (1961) quote two sets of values for the elastic constants of copper but 
only the main set has been used here. The second set of values gives results quite 
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close to those obtained with the first set. They also quote two sets of values for 
the measured rate of change of the elastic constants of copper with temperature. 
As these differ quite strongly, both sets have been included in Table 1. A detailed 
breakdown of the individual contributions to Dnk in the case of silver is 

DWk = -0,233 X 10-3 deg-l, 

Di13)k = +0'309xl0-3 deg-1, 

Dri)k = -0 ·104 X 10-3 deg-l, 

D~i)k = +0·053 X 10-3 deg-l, 

D~If)k = +0·217 X 10-3 deg-1. 

The ratio of these contributions is much the same for the other components of 
silver and for copper. 
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