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Summary 

A general method is presented for computation of radial distribution functions 
for plasmas over a wide range of temperatures and densities. The method uses the 
Monte Carlo technique applied by Wood and Parker, and extends this to long-range 
forces using results borrowed from crystal lattice theory. The approach is then used 
to calculate the radial distribution functions for a proton-electron plasma of density 
1018 electrons/cm3 at a temperature of 104 OK. The results show the usefulness of 
the method if sufficient computing facilities are available. 

I. INTRODUCTION 

The radial distribution function g(r), defined by p(r) = pog(r), describes the 
local microscopic density or structure of a liquid, and has been used extensively in 
the microscopic approach to liquids to obtain equations involving the macroscopic 
thermodynamic variables. Because of its important role in the theory there have been 
several attempts to obtain practical estimates for g(r), and the early work on liquids 
developed two main methods for finding g(r). The first is the method of integral equa
tions, where the Superposition approximation or other assumptions are made to 
obtain integral equations from the theory in a form that can be solved numerically. 
The second is the Monte Carlo technique, a computational approach which can be 
applied to any substance that may be considered to be composed of individual 
interacting molecules. Broyles (1962) has recently compared the latest integral 
equation solutions for liquids with the corresponding Monte Carlo results, which are 
considered the most accurate. 

The extension of the above techniques to plasmas is not as easy as it may seem, 
owing to the presence of the Coulomb forces, which necessitate a very long-range 
integration or summation. However, Green (1961) has extended the integral-equation 
approach to plasmas, and has shown that the Debye-Hiickel (D.H.) theory is a first 
approximation, but that higher corrections are important. Villars (1963) has solved 
Green's equations and has obtained radial distribution functions for metallic plasmas 
for a certain range of temperature and number density. Also, Broyles (1961) has 
extended the integral equations of Perkus and Yevick (1958) and the Convolution 
Hypernetted Chain approximation to long-range forces, and Carley (1963) has solved 
these to obtain radial distribution functions for a classical electron gas. At the present 
time, however, the accuracy of the above solution is in some doubt, and in this paper it 
is intended to extend the accurate Monte Carlo method and obtain radial distribution 
functions for a proton-electron plasma of specified number density and temperature. 
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II. THE METHOD 

A system composed of N individual particles is confined in a volume V at a 
temperature T. The particles are assumed to obey classical statistics, and further, 
in the interest of tractability, the particles are assumed to have spherically symmetric 
potential fields and to interact with the Coulomb potential. Subject to these assump
tions the method is not restricted to any range of temperature or density, although it 
proves more efficient in specific regions. 

The problem is reduced to a feasible size by considering only a finite number of 
particles N, and in this case N = 32, a value which proves convenient and gives a 
reasonable accuracy (see Alder and Wainright 1960). In the initial configuration the 
particles are placed randomly in a unit cube of volume V = L3 = 1 cubic cell unit (a 
convenient measure oflength), but as the computer can only deal with a finite number 
of digits k, the coordinates Xi!, Xi2, Xi3 of the ith particle are represented by Xi" which 
has a number of digits not greater than k. Another configuration C(kr) is determined 
from C(jr) as follows. The coordinates of one of the particles are changed by a small 
random amount ox such that loxl < ()o. In general the molecule which suffers this 
displacement may be chosen randomly, or in a systematic fashion as in this calcula
tion. The configuration which is next in the series C(jr+l), is either C(jr) or C(kr), 
and, to decide which, the potential energies EP of C(jr) and ET of C(k r ) are calculated, 
and a random number RAND is chosen on the interval 0 ~ RAND ~ l. 

If 0 ~ RAND ~ (l+eP(ET-EP))-l, the configuration C(jr) is taken. 

If (l+eP(ET-EP))-l < RAND ~ 1, the configuration C(kr) is taken. 

Such a choice (as will be shown later) ensures that the relative frequency of a 
configuration C(j) with potential energy V(j) in the sequence of configurations is 
asymptoticallyexp(-f3V(j)). As the 32 particles are considered, a store is kept of 
the pairing energy and distance between any two particles, since this enables quick 
calculation of the energy and an estimate of the radial distribution function for like 
particles from 

gdr) = !:J..NL /27Tr2MN 2n, (1) 

where N = 32, and n is the number of large iterations completed in a calculation, a 
"large iteration" being defined when all 32 particles in the cell have been moved or 
attempted to move. 

!:J..NL is the number oflike particles recorded at the distance r to r+!:J..r from the 
given particle; for the unlike case gu(r), the number of unlike particles !:J..N u in that 
range would be the appropriate value. 

The theory underlying the above procedure is based on two papers, one by 
Metropolis et al. (1953) who first proposed the Monte Carlo approach to compute 
distribution functions, and the second by Wood and Parker (1957) who put forward a 
complete and rigorous theory. A petit canonical ensemble is constructed from a 
canonical ensemble (i.e. reducing the continuum of configurations to a countable set 
of configurations) by considering only a finite number of digits in specifying the 
coordinates of a particle. This effectively divides the unit cell into a very fine mesh, 
such that the positions of the molecules are specified by a single number associated 
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with each mesh cell. This division is inherent in numerical calculation, and it is physi
cally reasonable that a sufficiently fine subdivision will give results indistinguishable 
from the continuum of configurations. To calculate the equilibrium value of any 
quantity of interest F, then 

F = L.jFjexp(-Ej/kT) 
L.jexp(-EjjkT) , 

where j runs over all coordinate and velocity configurations. Also as velocity
independent forces have been assumed, and if F is not a function of velocity, this can 
be written 

F = L.J F j exp( - V(j)jkT) 
L.jexp(- V(j)jkT) , 

where j now runs over all coordinate configurations. Now even in the case where N is 
reasonably small it is impracticable to carry out the multidimensional sum by usual 
numerical methods, and so the Monte Carlo method is used. The Monte Carlo method 
of evaluating many-dimensional integrals consists of integrating over a random 
sampling of points instead of a regular array of points. In this case, ifthe Monte Carlo 
technique were applied in a straightforward manner, a random configuration would 
be chosen, and then weighted by exp( -fiV(j)). However, a more practicable method 
is to choose configurations with a probability exp( -fiV(j)) and weight them evenly. 
Thus as Wood and Parker (1957) state "the object is to generate a Markov chain in 
which asymptotically each state k recurs with a frequency proportional to the 
Boltzmann factor exp( -fiV(j)) for that state". Then the average of F j will converge 
to the petit canonical ensemble average as the chain length increases. All that is now 
needed is to show that the relative frequency of C(j) in the sequence of configurations 
generated above is asymptotically exp( -fiV(j)). Suppose the probability that jr 
should have a value j is Pr(j), and let C(k) be a configuration obtained from C(j) in 
the manner described above (i.e. C(k) belongs to a set of configurations accessible from 
C(j) by changing the coordinates of one particle by amounts less than (0). If E(j) 
denotes this set of configurations (ensemble), then k€E(j). Let Q be the number of 
distinct configurations in each of the ensembles E(j) and E(k). Now the probability 
of moving from state jr+1 back to state j is Pr+1(j), and we have 

QPr+l(,j) = Pr(j) 1: [1-a(j,k)]+ 1: Pr(k)a(k,j), (2) 
keE(j) hE(k) 

where 

a(j, k) = {l + explfiV(k)-fiV(j)]r-\ (3) 

that is, a(j, k) is the probability that C(j) will be changed to C(k) by displacing a 

molecule in C(j), and ~ is the summation over all values of k such that kEE(j). Now 
keE(j) 

the relative frequency of configuration C(j) is asymptotically proportional to prj). But 

S 

p(j) = lim S-l ~ Pr(j). 
S->oo r~l 
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Hence from (2) 

Qp(j) = p(j) [Q- ~ CX(j, k)J + ~ p(k)cx(k, j), 
kcE(j) hE(k) 

that is, 

p(j) ~ CX(j, k) = ~ p(k)cx(k,j). (4) 
keE(j) JeE(k) 

This means that the probabilities must satisfy the condition of microscopic reversibi
lity, and gives a set of simultaneous equations to determine the p(j), which, if we 
replace cx(j, k) with (3), has the solutionp(j) = A exp( -(3V(j)), where A is independent 
ofj, and this is the property of the sequence C(jl), C(j2), ... that we wished to prove. 

There are other ways of assigning the probabilities cx(j, k) so that equation (4) 
still has a solution p(j)aexp(-(3V(j)). However, it has been found in simple tests 
that the choice of cx(j, k) given in (3) secures the most rapid convergence of the series. 
This choice is of considerable practical importance, since in the calculation the 

s 
average F is found via F = 8-1 ~ FUr), with suitably chosen values of T and 8, 

r~T+l 

and if a bad choice is made for cxU, k) then these values of T and 8 will be unnecessarily 
large. Effectively cx(j, k) is a normalized Boltzmann distribution for particles allowed 
to move between two potential energy states V(j) and V(k). It is the calculation of 
the potential energy that causes most of the difficulty with plasmas. For a start it 
is necessary to introduce the "periodic boundary condition" to eliminate surface 
effects and deal with the long-range forces. The basic cell of 32 particles is considered 
to be surrounded by exactly similar cells, in each of which the molecular configuration 
in the basic cell is identically repeated. Hence the appearance is similar to a crystal 
lattice, with repetition of the basic cell. Alder and Wainright (1960) have shown that 
for fluids this repetition leads to only small errors for N ;? 30, but that it causes signi
ficant errors for low N or for very dense systems. 

The calculation of the potential energy of a configuration utilizes crystal theory, 
and employs a technique similar to the calculation of the "Madelung energy" for a 
crystal, a good derivation of which is given by Born and Huang (1954). Let the 
position of the kth particle in the cell be designated by 

x(k) = al xl(k) +a2 x2(k)+a3 x3(k), 

where Xl, X2, and X3 are the components ofx(k) along the coordinate vectors al, a2, a3. 
Let the cells be specified by cell indices h, l2' l3, and define a cell vector 

x(l) = llal +l2a2+l3a3. 

Hence the position vector of an arbitrary particle is represented by x(l)+x(k), 

written x(~). It is also useful to define a reciprocal lattice by b" . up = b"p, and from 

these reciprocal lattice vectors b Ct, a reciprocal cell vector y(h) can be defined by 

y(h) = hI b l +h2 b 2+h3 b:l. 

Then x(l) . y(h) = integer, and exp(27Tiy(h) . x) is periodic in x. With the above 
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notation, and assuming that the ions interact as point charges with a Coulomb poten
tial, the electrostatic energy for an arbitrary zero cell may be written as 

E = ~~~: ~k~k/lx(~,)-x(~)I, (5) 

where ~k is the charge on a particle k, gk' is the charge on a particle k', k is an index 
running from 1 to N on particles in celll = 0, k' is an index running from 1 to N on 
particles in celll', and l' is an index running from - 00 to 00. The~' means that when 
l' = 0, k' cannot equal k, as this would include self-interaction energy in the sum. 
The factor t appears in the formulae since the summation includes every interaction 
twice. Also notice that since a plasma is electrically neutral, then 

2: ~k = O. 
k 

(6) 

It is impractical to evaluate (5) by direct summation since the slow decrease of the 
Coulomb interaction means that the sum should be over an infinity of cells. However, 
the energy can be expressed as a convergent series in the following manner. Rewrite 
(5) as 

( 
fk' gk) 

E = -21 2: ~k lim 2: I--(f)'-'-' ·····1· - ix(k)-xl , 
k x->x(k) I'k' X - x 

k' , 

(7) 

then use Ewald's identity, namely 

I ( l') 1-1 2 (00 {I (l') 12 2} IX k' -x = ~7TJO exp - x k' -x pdp, 

to express the interparticle distance as an integral. Further the integral can be split 
into two quickly convergent parts by use of the Theta transformation, namely 

~ 2: exp{-lx(l)+x(k')-xI2p2} = 27T2: 13 exp{_7T2p-2Iy(h) I 2+ 27Tiy(h) . (x-x(k'))}, 
,,7T I v h p 

where v is the cell volume, and since we are dealing with a face-centred cubic lattice 
the reciprocal cell vectors are equal to the cell vectors. However, it is convenient to 
talk in terms of the reciprocal lattice vectors as this helps with dimension checks. 
Now, putting the appropriate series in (7) after dividing the range of integration, so 
that for small values of p the right-hand side of the Theta function identity is used, 
and for large values of p the left-hand side is used, we obtain 

E = -21 2: gk lim 2: gk,[27T (R ~ exp{-7T2p-2 Iy(h)1 2+27Tiy(h) . (x-x(k'))}dp 
k x->x(k) l'k' V J 0 p 

foo 2 {I (l') 12 2} gk ] 
+ v R ~7T exp -I x k' -x p dp- x(k)-x . 

The term l' = 0 may be neglected in the first term above (indicated by a prime on the 
summation in the second term when rewritten below) because of (6). Then changing 
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the order of integration and summation, the integration can be carried out; further, 
the second term can be "'Titten in terms of a standard integral called the Error 
function, defined by 

2lX 
2 E(x) = -I. e -t dt, 

\1T 0 

since then 

R 2 fOO 2 2 
R (I-E(Rt)) = -I' e -It I Pdp. 

t \ 1T R 

Completing this and rearranging gives 

Ec ~ f ",':~" [" ,~", RHi,)-xl(l-E(+(~lcxi))-~' 
+ :?: ~ g/c, ~' exp{ ~2R-2IY(h)12}2eXp{2:iY(hL_iX-X(k'))}l. 

v /c' h 1T ly(h)1 

In taking the limit, it can be seen that apart from the second term and the term 

(~,) = (~) in the first term, all terms are regular functions of x in the neighbourhood 

of x(k), and hence in these terms directly replace x by x(k). The prime on the first 

summation means the term (~,) = (~) is excluded. Thus 

E ~ ~ t,:;"" ;'Hn'--X(~)I (l-m( RHn-X(k)i)) 

+ ;v ~ g/cg/c,~, exp{1T2Iy(h)12/R2}exp{21Tiy(h). (x(k)-x(k'))} 
/c/c' h 1T2Iy(h) 12 

1", 2 . l R 1 ] +-2."-' t/c hm RI (k) 1{I-E(R!x(k)-x 1)}- I (k) . 
/c x->x(/c) X -x x -xl 

This last term has the form 

The Energy Equation 

liml~{l-E(RY)}- ~J - -2R 
~->O R~ ., ~ - ----:;;:-. 

(8) 

The equation above calculates the potential energy in two parts; (a) short-range 
interactions, which are accounted for in term 1, and (b) long-range interactions which 
are accounted for in term 2. However, the energy associated with term 1 is not the 
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energy of the short-range interactions, as term 3 also involves some short-range 
energy, the amount depending on the parameter R. The energy will be in ergs if tk is 
in e.s.u., and R is in cm- l . In crystal theory R is usually chosen of order l((nearest 
ion-ion distance) for quick convergence of both series, and this was initially the value 
given to R, but experience has shown that a better indication of the order of R is given 
by l((Debye shielding distance). The exact value chosen for R was determined by 
accuracy considerations as follows. To terminate the series of the first term, the 
energy contribution of particles interacting beyond a distance Xc is neglected; and 
this effectively considers interactions over only a finite number of cells l. The percent
age error can be found as a function of RXc the error increasing as RXc increases. 

Also the calculation of E(RIX(~')-X(k)l) is the most time consuming of all the 

operations, and as the number of these to be calculated depends on Xc, we require Xc 
to be as small as possible. A rough estimate can also be calculated for the error in the 
second term if terms beyond hI = -1, 0, 1 are neglected, and it is found that the 
error increases with R. It was found from preliminary calculations that the first term 
was much larger in magnitude than the second term, and fell slightly in magnitude 
as R increased, whereas the magnitude of the second term increased rapidly with R. 
To obtain the minimum error then, with a specified speed, the error in term 1 should 
approximately equal the error in term 2. This implied giving R a value of 2·7 (cell 
units)-l, and when this value was tried it gave very accurate values for the potential 
energy of the cell, only disagreeing in the fifth figure. However, results obtained 
indicated that it would be much better to have less accuracy, and to improve the 
speed of the calculation, so Xc was reduced to 0·5 cell units (note this is still greater 
than the Debye shielding distance for temperatures below 5 X 104 OK) and by again 
going through the above analysis, a value of R = 3·5 was found to give minimum 
error, which now became as high as ±l in the third figure, but the increase in speed 
amply justified the change. 

The preliminary calculations also emphasized the importance of three other 
factors. The choice of 30, the maximum displacement a particle may undergo; the 
choice of AO, the distance of closest approach between two particles; and the distribu
tion choice a(j, k) given by equation (3). Consider the probability a(j, k) for a transi
tion from a high energy state j to a proposed new state k oflower energy, so 

3E = V(j)- V(k) 

will be positive, and a(j,k) will always be less than 0·5. As 

a(j, k) = {l+ exp(3E(kT)}-1, 

the probability of a particle staying in state j in preference to k will also depend 
strongly on the temperature as well as on 3E. The initial calculations showed that 
3E depends in turn on the size and direction of the particle movement, and the 
position of the closest particle. In future two particles which are closer than 100 mesh 
units will be referred to as "linked", and it is movements of these particles which 
cause large changes in 3E, and hence give a large probability of the particle moving 
to the lower energy state. However, it was found that at high temperatures (i.e. 
105 OK) the particles approximately distribute themselves throughout the cell, and 
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have an average interparticle distance of approximately 400 mesh units, so 3E was 
usually small, and !X(j, k) ~ 0 ·5. At lower temperatures (~ 104 OK) more links were 
formed, and even small changes 3E had a greater effect. Perhaps a useful interpreta
tion of how the statistics are built in is to consider that each particle has associated 
with it an effective statistical radius, beyond which the effect of the statistical distribu
tion is negligible, but within which the statistics appreciably influence particle move
ments. This effective statistical radius becomes larger as the temperature is lowered. 
Now as indicated above, 30 also has an important influence on the rapidity of conver
gence and Green (1964) has shown that a 30 ~ L/3N has the right order of magnitude 
for most calculations. However, if 30 is too large, the energy/cell will fluctuate 
considerably with each new iteration, while on the other hand if 30 is too small, not 
enough samples of configuration space will be obtained in a reasonable time. It is 
perhaps best to let 30 be on the large side to start with, but as the system nears 
equilibrium to decrease 30 to a smaller value. A parameter which is important in the 
interpretation of the results is AO, which limits the closeness of approach of two 
particles, and hence the potential energy between them. The value given to AO is 
twice the Bohr radius, for at this radius (by Bohr's orbit theory) a particle has its 
lowest potential energy possible without any kinetic energy, and the value of the 
potential energy is the same as the ionization energy for the particle. However, the 
importance of AO becomes apparent if it is said that "pairing" occurs when two parti
cles are closer than AO (i.e. particles are in the ground state), and particles are not 
considered as paired when they are in excited states. Such states have previously 
been referred to by saying the particles are "linked". In Saha's work, which is 
mentioned when the results are discussed, particles are considered to be paired only 
if they are in the ground state as above, but excited states (except the continuum) 
are not allowed to exist. This differs from the above case, where a continuum of 
excited states is allowed to exist, as particles may move out from AO in a random 
fashion, modified only by the statistics. The difference in the definition of pairs and 
links between two charged particles must be kept in mind when comparison is made 
with Saha's theory. 

III. COlVIPUTATION 

A program was devised to carry out the procedure discussed in the last 
section. The major part of the program is concerned with the calculation of the 
potential energy associated with a particle from equation (8); and considerable 
effort was made to reduce the computational time for one iteration. Preliminary runs 
were completed with four particles on an I.B.M. 1620 computer to ascertain the 
accuracy, and optimum values for R, 30 , and Xc. Using the four-particle results to 
start from a favourable configuration, the program was transferred to the I.B.M. 
7090, and 16 electrons and 16 protons considered in the unit cell. The electrostatic 
energy of the 16 electrons and 16 protons in a particular configuration is termed the 
"cell energy" and this is plotted against the number of iterations done. (An iteration 
is completed when all 32 particles in the cell have each been considered for possible 
movement.) When the energy was considered to have reached a stable value, the run 
was terminated, and graphs of the radial distribution functions for like and unlike 
particles were compiled from the equilibrium configuration, i.e. where the energy graph 
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was relatively level. The number density was constant for all runs, the number of 
protons equalling the number of electrons = 1018 electrons/cm3 . Three main runs 
were completed, the first at a temperature of 1· 35 X 105 oK ran for 750 iterations, 
the second at 2 X 104 oK ran for 1050 iterations, and for both cases R = 2·7 (cell 
units)-I, Xc = 1·0 cell units, and 00 = 0·0l5.J3 cell units. The results for the radial 
distribution functions were in extreme disagreement with the D.H. theory, and the 
error seemed to be that not enough iterations were completed and that the system 
was still proceeding to equilibrium. To overcome this difficulty the program was 
changed, with the loss of some accuracy, and run 3 was computed for l' = 104 oK, 
Xc = 0·5,00 = 0·0l5.J3, and R = 3·5, and allowed to run for 6100 iterations. The 
results of this run only will be presented. This run took five hours of computing time. 

The random numbers needed for the program were generated by the power 
residue method Rn+l = (KRn+c)modp, where the constants have been chosen for 
the 7090 computer by Rotenburg (1960), and Coveyou (1960) has modified them to 
minimize correlation between successive numbers. The Error function was evaluated 
in a subprogram using Hasting's approximation. While computing, the problem was 
most conveniently considered in terms of the cell unit, which was further divided into 
mesh units to enable much of the arithmetic to be done in fixed point mode. One cell 
unit = 1000 mesh units, and its value is determined by the density to be considered. 
Thus 16 electrons in a cube of 1 cubic cell unit must be equivalent to the electron 
density N, and hence 

1 cell unit = (16/N)i cm 

= 2·52xl0-6 cm for N = 1018 electrons/cm3 . 

Energy was computed in terms of (cell units length)-l, so that 

energy in ergs = 23·96746 X W-2o(16/N)-t X energy in cell units, 

and similarly 

1 10-4 N} 
fJ = kT = 16·7102 X 2.52 X T cell units of energy. 

IV. RESULTS AND DISCUSSION 

The results of run 3 are presented first with brief notes, then some of the 
comparable theories are discussed, and finally the conclusions and limitations of the 
method are presented. 

The Energy Graph 

The energy graph (Fig. 1) only shows points which are averaged over 20 energy 
values, and even then the graph is highly erratic; before averaging it was even more 
so, large fluctuations occurring within a few iterations. Plotted on the right-hand side 
of the energy graph are various levels. The Monte Carlo level is the average energy 
of the calculation for iterations 4000-6100 (i.e. those from which the radial distribu
tion graphs were drawn) and this level is meant to give the equilibrium level, which, 
as can be seen from the graph, is doubtful. The D.H.line gives the cell energy as found 
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by the D.H. theory. The horizontal sloping lines are drawn to indicate the number 
of pairs existing in the unit cell. The lines slope because of the criterion taken for 
pairing, so that although only one pair may exist, there is an increasing number of 
links, or particles not far from pairing, as the calculation proceeds and these links 
lower the energy level at which one pair is present. 

The Distribution Functions 

The distribution functions (Fig. 2) are obtained from equation (1). To graphically 
represent the results and obtain a smooth graph, tlN is summed in steps of tlr = 10 
mesh units. The interval 0-10 mesh units is not considered, as particles within 

ITERATION NUMBER' 
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Fig. I.-Energy graph for a plasma of density 1018 electrons/cm3 at a 
temperature of 104 OK. 

4·2 mesh units are paired. The radial distribution function is normalized, so that 
g(r) ---+ 1 as r ---+ 00, but since the self-interaction distance is not counted, it follows 
that only 15 like interparticle distances are recorded in the cell for one particle, so 
one may expect po = 32 X 15 as the 32 particles are moved. However, if this is used 
to obtain the normalization constant, then it leads to a large error when the energy/cell 
is calculated from the radial distribution function, as now the number of electrons 
(N a) is not equal to the number of protons (N b), and the cell is not electrically neutral, 
so that the macroscopic energy components in the formula 

Ue = 2:a ~b tNaNb ~r(g(r)-1)4>ab47Tr2!lr (9) 

do not cancel. This means po must be the same for like and unlike particles, and the 
radial distri bution functions are obtained using normalization factors with po = 16 X 32 
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in both. Figure 2 includes a graph of the D.H. radial distribution function for compari
son, and the Debye shielding distance is marked by AD, to indicate the distance 
beyond which the change of the reference pat:ticle should be neutralized. Before 
discussing the graphs and their implications in detail, the other theories will be 
briefly presented and discussed, so that later comparisons can be made. 
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Fig. 2.-Radial distribution functions for a plasma (of 
density 1018 electrons/cm3 at a temperature of 104 OK) 

calculated from iterations 4000 to 6100. 

The Debye-Hiickel theory can be applied to plasmas, i.e. fully ionized gases whose 
resultant macroscopic charge is zero. The theory uses Boltzmann's distribution law 
and Poisson's equation, and assumes the interionic potential is small compared with 
the thermal energy, to obtain the following equations for the distribution function 

{eaeb I } 
gab(r) = exp rkT· exp(r/AD) , 

where AD = (kT /87Tne2)i and is called the Debye shielding distance, ea, eb are the charges 
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on the particles of type a and type b, T is the absolute temperature, and n = number 
density of particles of type a = number density of particles of type b. 

This distribution function emphasizes an exponential form, and there is a 
complete lack of oscillation. It also implies that surrounding a given ion there is a 
sheath of ions of opposite sign, and that outside a distance AD the sheath has neutralized 
the potential field of the ion. If gDH(r) is substituted in equation (9) and a linear 
approximation used, the energy/unit volume is given by 

2 

EDH = ~: {exp( -bo/AD)- exp( -aO/AD)}, 

where bo is the range of the distribution function, and ao is the distance of closest 
approach. The D.H. level on the graph of Figure 2 is for ao = 0 and bo --0>- 00. The 
D.H. theory then will be inaccurate when the density of the plasma is high, as the 
interionic potential is large compared with the thermal energy. Gronwall, La Mer, and 
Sandved (1928) have shown that there will be at least a 10% correction in the D.H. 
energy level for the density and temperature considered. 

Broyles, Sahlin, and Carley (196:3) have recently extended to plasmas the most 
. successful of the integral equation methods used to find radial distribution functions 
for fluids, and Carley (1963) has applied the techniques in detail to a classical 
electron gas (i.e. electrons considered moving in a neutralizing uniform background of 
positive charge), and distribution functions for various densities and temperatures 
are presented in terms of a parameter 8, where 8 R:> 370T/N, T being the temperature 
in OK, and N the number of electrons/cm3 . For T = 104 OK and N = 1018 electrons/ 
cm3 the like radial distribution functions given by the Percus-Yevick and Broyles
Sahlin methods agree well, but disagree with the D.H. and Convolution Hypernetted 
Chain approximations. This disagreement is enough to alter energy values consider
ably, but the form of the distribution function from all methods is very similar, and 
hence has not been drawn on the graphs, the D.H. form being deemed sufficient. They 
notice no oscillatory behaviour of g for values of 8 > O· 5, but below this value some 
oscillatory nature is evident; however, at this stage the solution of the integral 
equations becomes difficult, the convergence being slower and less stable. 

Villars (1963) has numerically solved a set of integral equations which were 
proposed by Green (1961) for metallic plasmas. For 1018 electrons/cm3 at 104 OK he 
obtains unlike radial distribution functions very similar to the D.H. curve, only being 
slightly displaced, this being significant when calculating' some of the thermodynamic 
variables. During the numerical procedure he finds that it is necessary to use a D.H. 
tail to the radial distribution function, that g(r) must also be renormalized, and that 
ifthis is done then the results converge rapidly for temperatures of 107 OK and 106 OK, 

slowly for 105 OK, but diverge for 104 OK. 

Saha's theory* on the thermal ionization of gases also provides some comparison 
with the above results. His equation, derived from the viewpoint of chemical equili
bria, has proved reasonably useful and has been used extensively since its proposal. 
For a hydrogen gas of density 1018 electrons/cm3 he predicts that the degree of 

* See Saha and Saha (1934). 
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ionization (i.e. number density of ions/number density of atoms originally in the gas) 
is 5% at 104 oK and approximately 90% at 2 X 104 oK. Referring to the basic cell 
of 32 atoms used in the Monte Carlo approach, this means that from Saha's theory 
one might expect 1 pair of particles at 2 X 104 oK with the other 30 particles existing 
as ions, whereas at 104 oK one would expect only 2 ions and the other 30 atoms to be 
existing as 15 pairs. However, the Saha equation involves certain approximations; 
thus it neglects excited states, an ion being either in its lowest bound state or in the 
continuum, and it also includes thermodynamic assumptions. 

From the above theories one may not be surprised if these results differ from 
the D.H. theory considerably, as the approximations of that theory are large in the 
range of these results, and also the occurrence of pairing invalidates the D.H. theory 
to a large extent. It is also not surprising that the results disagree with the results of 
Broyles, Sahlin, and Carley (1963), and of Carley (1963) as they deal with an electron 
gas, and not a proton-electron piasma. The results of Villars (1963) are in some doubt 
because they do not converge for this temperature. However, the large discrepancies 
of the other runs gave an indication that the disagreement in the case of the higher 
temperatures was due to the system only approaching equilibrium very slowly, and 
that at the end of the run the configuration still retained memory of the initial con
figuration, and this effect certainly contributes to the disagreement for the low 
temperature case also, as it can be seen that the energy graph has not reached any
thing like a stable level. However, while searching for causes of discrepancy, several 
interesting features came to light. The energy peaks are closely related to particle 
movements. Thus when two unlike particles approach, or two like particles separate, 
a sudden downward peak appears. The particles move in a random walk fashion and 
at high temperatures become randomly dispersed throughout the volume, but at the 
lower temperature chosen, once the particles have collided they remain fairly close 
together, only rarely escaping the influence of the other particle. These results of the 
system approaching equilibrium may be useful for obtaining information about 
irreversible processes, as Green (1964) has shown that the study of one particle 
throughout several collisions is sufficient to determine the transport coefficients for 
the system, and the results may be later applied to this aspect. 

In spite of the fact that Figure 2 does not show the equilibrium distribution 
functions, some general features are becoming evident. For unlike particles there is a 
peak indicating the definite preference for particles to pair, this being followed by a 
trough at about 200 mesh units suggesting an absence of unlike particles, and then the 
curve returns to something like an average value. The like distribution function also 
has a depression at r = 200. However, when distribution graphs were drawn of the 
first few iterations, the unlike distribution function had no pronounced peaks or troughs; 
except for r < 50 the graph fell to zero. On the other hand, the like distribution 
function had a sharp peak at r = 50 (but still below 1·0), a very deep trough between 
r = 100-200, and then rose steadily to a high peak at 450. Thus, as the run has 
progressed the unlike distribution function has developed the depression below 50 
to a huge peak, and also developed a trough at 200, and a small peak at 450; while 
the unlike function has reduced the peak at 50, filled in the trough from 100 to 200 
to a very large extent, and also reduced considerably the peak at 450. Thus it seems 
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that some form oflong-range structure is being set up in the plasma, as the oscillatory 
pattern seems to be strengthening for the unlike case. The structure is not nearly as 
precise as a metallic crystal, and it may be connected with the theory of Bohm and 
Pines (1952), who have shown that collective excitations occur for an oscillation wave
length greater than the Debye shielding distance. As AD is small for a low temperature 
plasma of high density, one would expect plasma oscillations particularly in such a 
case. 

The results agree quite closely with Saha's theory, and, although at the end of 
the run there are at the most 5 pairs present whereas Saha's theory predicts 15, if the 
run were continued it is possible that more pairs would develop. A brief run at 103 oK 
showed that at this temperature all particles remained paired, as Saha predicts, and 
another run at 2 X 104 oK found no pairing, while one pair is suggested by Saha. Long 
runs at 9 X 103 oK and 1· 5 X 104 oK are needed to fully verify Saha's theory. 

In conclusion, the Monte Carlo method of calculating radial distribution 
functions in a plasma is a feasible approach if significant computing time is available. 
Compared with other methods it has the advantage of giving the percentage ionization 
if the plasma is not fully ionized, and this is especially useful for dense plasmas. The 
results indicate that at least 10000 iterations must be completed before the system 
can be considered near to its equilibrium state, and for a badly chosen starting 
configuration, the run would need to be considerably longer. The results also indicate 
that the Saha equation for the degree of ionization in a plasma is remarkably accurate, 
and the ionization occurs quite suddenly at about 104 oK. The distribution functions 
imply, and the emphasis in this word must be stressed, that, in the region of this 
electron density, oscillation appears in the radial distribution functions. However, 
for more conclusive results a longer run is needed so that the energy of the system can 
settle into an equilibrium pattern and steady-state radial distribution functions can 
be obtained. 
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