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Summary 

A previous calculation by one of the authors of the equation of state of an 
anharmonic rigid-ion model of sodium chloride has been corrected. The results are 
valid above room temperature and reasonable agreement with experiment is obtained 
to within about 200 0 of the melting point. Comparison with experiment is also 
made for specific heats Cv ' Cp and compressibilities I<T' I<s' 

1. INTRODUCTION 
Previous attempts have been made by one of the authors (Fletcher 1959, 

1961, hereafter referred to as F I and F II) to reproduce the observed thermal 
expansion of an ionic solid (sodium chloride) on a rigid-ion model. The solid 
was in fact treated as a collection of point ions with a mutual potential energy 
<P = <PC+<PR = ±e2/p+b/pn for any pair of them, distance p apart, and the repulsive 
term <PR was ignored except between nearest neighbours. Neither attempt was 
very successful but in the second one, which was intended to include anharmonic 
effects of lowest order, a mistake was made. In the expansion of the crystal potential 
energy in powers of the displacements of the ions from their mean positions it was 
assumed that cubic terms would be absent. This is not so and in the present work 
this is corrected. Inclusion of the cubic terms, however, has meant restriction of 
the calculations so far to high temperatures as in the treatment of Maradudin, 
Flinn, and Coldwell-Horsfall (1961a, 1961b). 

Thus formal expressions for the free energy of an anharmonic crystal are 
obtained in Section II, their approximation at high temperature is deduced in 
Section III, and application of them is made in Sections IV and V to the evaluation 
of the coefficient of thermal expansion a, compressibilities KT' KS ' and specific heats 
Ov, Op of sodium chloride. The results are discussed and compared with experiment 
in Section VI. 

II. FREE ENERGY OF ANHARMONIC CRYSTAL 
The basic treatment of the problem is the same as in F I and F II and the 

relevant nomenclature is recalled here. mK , i-~, u~ are respectively the mass, mean 
position, and displacement from its mean position of the Kth particle in the lth 
unit cell of the crystal (K = 1,2, ... ,8). <P~~' = <pKK'(lr~-r~'I) is the mutual potential 
energy of the (K, 1) and (K', 1') particles. (jJ(v) is the term in the Taylor expansion 
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of the potential energy of the crystal which is of vth order in the Cartesian com
ponents u~a (u = x, y, z). Wqj is the frequency of the jth normal mode of vibration 
with wave vector q for the crystal in the harmonic approximation. Aqj' A~j are 
respectively annihilation and creation operators for the phonon /iwqj . 

The Hamiltonian for a volume V of the crystal in the harmonic approximation 
is then 

H(2) = <P(O)+HO+Ezp = <P(O)+(87T3/V) L. A~jAqj/iwqj+t L./iwqj (1) 
q) q) 

and the anharmonic perturbing term is 

where 

(2) 

the abbreviations k for q/cj/c and -le for -qkj/c have been used in the suffices, and 
~q = 1 if q/27T is a reciprocal lattice vector and is zero otherwise. The coefficients, 
which were not given explicitly in F II but are required here, are 

~ [ aVcpKK,(r) J 
L... au1 ··· auv r=A 

a1 , ••• ,av 
A 

X tr{ V"ak(qd/c)exp(iq/c''\)- VK'ak(q/cj/c) }Wk! exp(iq/"r~), (3) 
k~l 

where N is the number of unit cells in the crystal, the VK(q/ej/c) are the amplitudes 
of the normal modes, A _ ? -ro, and L denotes summation over 1, K, and K', a K K A 

notation used wherever possible for brevity. 

The free energy of the crystal is given by 

where F(2) is the harmonic contribution, f3 = l/kT, and 11,2, ... ,nr) = A; A; 
... A~rIO) is an eigenstate of the crystal in the harmonic approximation; 
exp[ -f3(Ho+<P')]r denotes the operator exp[ -f3(Ho+<P')] expanded in powers of 
<P', <P' expressed in terms of Ale, A~, and these replaced by A/e[I-exp( -f3/iwk)]-t, 
AiJl-exp( -f3/iw/c)]-' respectively. F then consists of a number of terms, each of 
which is represented by a diagram and L refers to the fact that only reduced 

red. 
diagrams with at least one vertex are to be considered. The ones with no vertices 
correspond to part of the harmonic contribution, which is, of course, 

F(2) = <P(O)+EZp+~ 2 In[l-exp( -,8/iWqj)]. 

qj 

(5) 
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The lowest order anharmonic contributions correspond to diagrams with two 
threefold vertices or one fourfold vertex. The latter give the contribution obtained 
previously in F II, 

(6) 

The diagrams to be considered for the former are 

(a) ~ , E 

(b) Q ... _Q, ~, 
For those of type (b) the occurrence of the factor Llq• +q, +q, at each vertex means 
that the line joining the vertices must correspond to zero wave vector. Then the 
B-factors involved are B~J.qj',_qj' and these are zero, provided that for every lattice 
vector r~K' there is another r~K' = -r~K" This is true for the sodium chloride type 
lattice and so diagrams (b) will be ignored. The contribution to F from diagrams (a) 
then proves to be 

F(3) = -6 ~ [1-eXP{-(3h(WI+W2+w3)}+eXP(-(3hwI)-eXP{-(3h(W2+W3)} 
Ii L wI+w2+w3 W2+ w3-wl 

qljl 
q2j2 
qaj3 

+ exp( -(3hw2) -exp{ -(3h(w3+wl )} + exp( -(3hW3) -exp{ -(3n(wl +w2)}] 

W3 +wI -W2 WI +W2 -W3 

( Vj87T3)31 B(3) 12Ll X 1.2.3 q.+q,+q, 
{l-exp( -(3liw])}{l-exp( -(3hw2)}{1-exp( -(3hW3)}' 

(7) 

The carrying out of the double summation involved in F(4) and the triple one in 
F(3) is not feasible in practice. For the former Fletcher in F II approximated to 
Bi~~.-1.-2 so that only a single summation was involved. Without any approximation, 
however, it may be written in the form 

(8) 

where 

FaJ).,,) = 1~ Lcoth~:jliwqj)[vKaeXp(iq'A,)-VK'a][vKa,eXp(-iqA,)-VK'aJ (9) 
q) 

However, no such simplification seems possible in the case of F(3) and it was therefore 
decided to restrict calculations at present to high temperatures ((3hw ~ 1), where 
approximations could be made aimed at overcoming this problem. 
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III. HIGH TEMPERATURE APPROXIMATION 

For (3nw ~ 1 the series expansion of exp( -(3nw) may be terminated after a 
few terms and a high temperature approximation to F(3) obtained. For consistency 
the same approximation is made to F(2) and F(4). This was first carried out by 
Maradudin, Flinn, and Coldwell-Horsfall (1961a), and in the case of F(2) the result is 

F (2) _ ""(O)+~ ~ In(Q21:2 2 ) +(3n2 ~ 2 _ (33n4 '" 4 + 
- 'V 2(3 ~ f"' Tb Wqj 24 ~ Wqj 2880 L... Wqj "" (10) 

qj qj qj 

Now W~j are the eigenvalues of the matrices D(q) with elements 

D ( ) -1 L [02¢>KK,(r)] ('~) aa' q = ( )~ ~ ~ f exp lq 'Iv , 
KK' mKm , z uaua r=A 

K I 

(ll) 

and therefore 

F(2) = cp(O)+3~Nln«(3n)+2~L lnID(q)I+~~ LTrD-:::~LTr(D2)+"" (12) 
q q q 

With regard to the quartic contribution, expression (9) becomes at high temperatures 

and hence F(4) = F~4) + F~4) + ... , where 

and 

C being the matrix with elements 

Caa, = -(mKmK,)1(va/e2 )Daa" 
KK' KK' 

The volume Va of the unit cell and charge -e on the electron have been introduced 
for convenience in the application to sodium chloride later, In obtaining (14) and 
later results the theorem proved in the appendix has been used. The next term 

(15) 

When the cubic contribution F(3) is similarly expanded in powers of (3, the leading 
term is again proportional to (3-2. Every term involves the awkward factor Llq, +q,+cu 

but if the device of Maradudin, Flinn, and Coldwell-Horsfall (1961a) of expressing 
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this as N-1l:: exp[i(ql +q2+q3) 'r~K]' is used, this leading term can be expressed as I 

3 

X n {ia1a,,(J.-J.' +J.")+!a,at,(J.")-!aja,,(J.+J.")-!ajaj'( -I.' +J.")}. (16) 
t=l 

The next term F~3), independ~nt of temperature, vanishes identically. 

IV. APPLICATION TO SODIUM CHLORIDE 

As in F I and F II numerical calculations of certain thermodynamic functions 
by means of the above theory were made for sodium chloride for comparison with 
experiment, but, of course, many of the expressions below are applicable to other 
diatomic substances with the sodium chloride structure. For these, if a is the 
nearest-neighbour separation, Va = 2a3, 8 = 2, and the Madelung number a.M = 1· 7476. 
With the same form of interionic potential as used in F I and F II (see Section I 
of this paper), the quantities 

A = 4n(n+l)be-2a-n+1; B = -4nbe-2a-n+1; 

where the suffix zero refers to values at room temperature T = To = 288°K, will 
be defined (note that A and B are functions of a, not ao as in F I and F II). The 
4th and 5th terms in the expression (12) for F(2) can then be reduced to 

fHi,2 "'" TrD = f3li2N(J..+J..)e2(A+2B), 24 ~ 16 1nt m 2 a3 (17) 
q 

the three parts coming respectively from products of second derivatives of two 
Coulomb terms, a Coulomb and a repulsive term, and two repulsive terms. In the 
case of sodium chloride investigated here (18) proves negligible. Putting ao = 
2'814XlO-8 cm and values of the right order for A and B, namely, 10·6 and -1·05 
respectively, its contribution to the specific heat Ov/N = -(T/N)((}2F/(}T2)V is 
15·7 X 1O-9T-4, while that of the leading term 6NkT In(li/kT) in F(2) is 6k = 8·28 X 
10-16, i.e. the ratio of the two is about 1: 300 at room temperature and decreasing 
with increasing temperature. SiInilarly, as regards thermal expansion, its contri
bution to N-l((}Fj(}V)T is -1·09 X lOuT-3, while that of the leading term r;[><O) in 
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F(2) is 1·1 X 1010. As regards compressibility, its contribution to (N K T )-l = 

(VjN)('iJ2FjoP)yis -3·27Xl014T-3,while that of (J>(O) is -2·48 X 1011. Thus with 
sufficient accuracy for all purposes the harmonic contribution to the free energy 
was taken as 

(19) 

In Fi4 ) for A. = a(l, 0, 0) there are four essentially different types of term 
given by (a1a 2a3a4) = (xxxx), (yyyy) , (yyzz) , and (xxyy); their contributions in 
suitable units were found to be 510, -3, -1, and -170 so that terms of the second 
and third types could be neglected. For A. = a(O, 1, 1) there are the same four 
types of term and their contributions in the same units were found to be 12, -21, 
30, and -21, i.e. approximately zero together as well as being individually quite 
small, so these were all neglected also. Contributions from other A. were smaller 
still so that it was taken with good accuracy that 

Fi4
) = 12k2a[{(n+2)(n+3) A-24}{j (O)-j (1 0 0)}2 

NT2 e2 4 xx XX" 

-{2(A-B)+(n+2)A-48}{ixoo(O)-ioox(1, 0, O)}{ioox(O)-ixx(O, 1, O)}]. 
(20) 

The other quartic contribution F~4) was evaluated approximately, summing over the 
six smallest vectors A., and found to be about one-tenth of Fi4) at room temperature, 
the ratio of the two being proportional to IIT2, and it was decided to neglect F~4) 
entirely. A similar analysis of the cubic term Fi3) showed that only contributions from 
A. = a(±1, 0, 0), a(O, ±1, 0), a(O,O, ±1); A.' = ±A.; a1 = a 2 = a3 = a~ = a~ = a~ 
need be considered and that then A." could be restricted to the zero vector and the 
six given above with sufficient accuracy so that 

FiS) 4k2a [n+2 ] 2 [ { }3 
NT2 = 7 -4-A - 6 8 ioooo(O)-ioooo(1, 0, 0) 

+{ 2ioooo(l, 0, 0) -i",,,,(O) -i.,oo(2, 0, 0) n. (21) 

It is of interest at this stage to summarize the approximations made. 

(i) (J>(v) for v > 4 have been ignored, as would appear necessary if use of the 
adiabatic approximation is to remain valid (Born and Huang 1954, pp. 166ff.) and 
for consistency with (ii). 

(ii) Diagrams with more than two triple or one fourfold vertex have been 
ignored. This is justified as they should correspond to contributions to F smaller 
than those retained by a factor <: (uja)2, where u is an average ionic displacement. 

(iii) Expanding F in inverse powers of the temperature T, this has been 
assumed high enough to neglect terms of order T-3 in F(2) and temperature-independent 
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terms in F(3), F(4). For T > 288°K it is estimated that errors so caused will be 
< 0'3% for F(2), < 10% for F(4), and less than this for F(3) since F~3) vanishes 
identically. To complete the picture the anharmonic contributions to (aF/aVlr 
varied from 5% of the leading harmonic term at room temperature to 46% at 
1000oK, the figures for Kr were 1'5% and 62%, and those forCv were 1'5% and 15%. 

(iv) In evaluating F(3) and F(4) only a few (smallest) vectors in the summations 
over A, A', and A" were retained, the error caused by this being < 2%. 

V. NUMERICAL CALCULATIONS 

As in F I and F II it was first necessary to fix the parameters A o, Eo and 
these were chosen to fit the experimental values ao = 2'814x10-8 cm and Kr = 

4 ·16 X 10-12 cm2/dyne of the lattice constant and isothermal compressibility at 
T = To = 288°K. Thus the equations (aF/aVlr = 0 and KY.! = V(a 2F/aplr lead to 

Eo = - 2aM_ aok~o(~ ~ InID(q)l) +(n+2):2(~+~)Ao+2Eo 
3 Ne dg L.... 0 24kao m1 m2 To 

q 

_ 2ao (i.(F(3)+F(4»)) 
Ne2 dg 0' 

(22) 

(23) 

TABLE 1 

COMPARISON OF CALCULATED VALUES OF Ao, Eo, AND n 

Author Ao Eo n 

Kellermann (1940) 10·18 -1·165 7·738 
Fletcher (1959) 10·68 -1·048 9·188 
Fletcher (1961) 10·40 -1·063 8·779 
Present work 10·45 -1·052 8·933 

Using Kellermann's (1940) values of Ao and Eo first to evaluate the right-hand 
sides of (22) and (23), an iterative process sufficed to solve these equations after 
two iterations. (L InID(q)l, F(3), F(4) and their derivatives with respect to g were 

q 

evaluated by computer, summations over q being carried out over the 48 wave 
vectors used by Kellermann, associated with suitable weighting factors as in F I 
and F 11.) The values obtained for A o, Eo, and the repulsive index n are shown 
in Table I in comparison with those of Kellermann (1940) and of Fletcher using 
the harmonic approximation (F I) and including F(4) (F II) (to show the influence 
of the cubic term F(3»). With these values of Ao and Eo, the free energy of the 
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Fig. 2.-Expansion of sodium chloride. ---Present work; 
- - - harmonic model (F I); . -.-. with quartic anhar
monicity (F II). Experimental values: 0 Eucken and 
Dannohl (1934); A Walther, Haschkowsky, and Strelkow 

(1937); 0 Fischmeister (1956). 

crystal and its first and second derivatives with respect to g were evaluated for 
g = 0·98(0·01)1·13. The dependence of the anharmonic contribution and its 
derivat,ives on volume is shown in Figure 1. 
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To determine the thermal expansion coefficient the equation (OFjOg)T = 0 
was solved for T as a function of g. The equation may be written 

T ~ L I ID( )1 = _(2aM +3B)e2 (n+2)n2e2(~ ~)A+2B _~~_(F(3) F(4)) 
N dg n q 3a kg4/3 + 24a3 k2g2 m + m T Nk dg + , o 0, 1 2 

q 

(24) 

and it was solved iteratively for each value of g. The results are compared with 
experiment in Figure 2. 
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Fig. 3.-Isothermal compressibility of sodium chloride. 
---Present work; - - - harmonic model (F I) ; 
with quartic harmonicity (F II). Experimental values: 
o Hunter and Siegel (1942); 8 Durand (1936). 

As in F I and F II the isothermal compressibility and specific heat at constant 
volume were also calculated and compared with experiment. However, in F I and 
F II the theoretical variation of volume with temperature was so at variance with 
experiment that it was felt necessary to use experimental thermal expansion results 
to relate the calculated free energy to T before evaluating KTand Ov. Their agreement 
with experiment could then be regarded only as partial support of the theory. 
In the present work this seemed unnecessary and F( V) was converted to F(T) 
where necessary by means of the (V,T) curve given by the theory itself. The 
expressions evaluated were 

+(n+2)(n+5)n2e2(~ ~)A +2B _g_ ~ (F(3)+F(4)) 
288ka6 g(n+5)/3 m + m T +2Na3 dg2 ' o 1 2 0 

(25) 
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(26) 

The results are compared with experiment and with the results of previous calculations 
in Figures 3 and 5. For reasons explained later it was also decided to calculate 
the adiabatic compressibility and specific heat at constant pressure and these are 
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Fig. 4.-Adiabatic compressibility of sodium chloride. 
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Fig. 5.-Specific heat at constant volume for sodium chloride. 
----- Present work; - - - harmonic model (F I) ; . -. -. 
with quartic anharmonicity (F II). 0 Experimental values 

(Hunter and Siegel 1942). 

compared with experiment in Figures 4 and 6. The expressions evaluated were 

Op = -T[a2FjaT2+(a2FjaTaV)(aVjaT)p] 

= 6Nk- ~An2e2(~+~)A+2B _~(F(3)+F(4») 
8ka~ g m1 m2 T2 T 

[NuMe2 NBe2 N(n+2)n2e2(~ ~)~+2B ~(F(3) F(4) J! dg 
+ 3ao g1!3 + 2ao gl/3 24ka~ g m1 + m 2 T +g dg + ) g d'1" 

(27) 

(28) 
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VI. DISCUSSION OF RESULTS 

Figure 2 shows that quite good agreement with experiment has been obtained 
in the case of thermal expansion. In the harmonic approximation (F I) the model 
expanded far too rapidly and became unstable for T ~ 750oK, well below the 
actual melting point T M. Inclusion of cubic and quartic anharmonic terms has 
removed both of these discrepancies, but now the theoretical curve, which is very 
nearly linear, falls below the experimental results above SOooK,...., O·STM . According 
to Fischmeister (1956), this cannot be due to the presence of Schottky defects, 
since there is no difference between macroscopic (dilatometer) and microscopic 
(X-ray) measurements, nor to Frenkel defects, which do not have any effect on 
volume. Two recent calculations of the thermal expansion of sodium chloride may 
be mentioned here. Mitskevich (1962), who allowed for the deformation of the ions 
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Fig. 6.-Specific heat at constant pressure for sodium chloride. 
--- Present work; - - - with omission of T2 terms in F. 
Experimental values: 0 Magnus (1913); fA Roth and 

Bertram (1929); 0 Kelley (1934). 

in a very detailed way, obtained very good agreement with experiment but did not 
carry his calculations above 300oK. Verma and Dayal (1963) have carried out a 
harmonic calculation very similar to F I but with an exponential repulsive term 
in the interparticle potential. Again the harmonic model expands too rapidly, 
more and more so as T --J. T M' but it does not become unstable until T,...., T M. 

(Their criticism of F I and F II, that in summations over the reciprocal lattice all 
points were equally weighted, is unjustified; both there and in the present work 
all points have been suitably weighted, e.g. by the factor ~K(k) in (26) of F I.) 
It would appear that, at least at high temperatures, a rigid-ion model of an ionic 
solid is unlikely to be satisfactory as far as the equation of state is concerned, 
whether anharmonicity is taken into account or not. So far the equation of state 
of a non rigid-ion model does not seem to have been considered, except by Mitskevich 
(1962). 

In the case of compressibility, Figure 3 shows that agreement with experiment 
for Kr is also considerably better than with the harmonic model although still not 
satisfactory for T ~ O·STM• Verma and Dayal's (1963) results with the harmonic, 
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exponential law model are similar to those in F I and the use of a rigid-ion model 
may again be questioned. The derivation of "experimental" results for KT from 
measurements of KS is unfortunately subject to considerable possibility of error 
since the correction term a2 VT lOp involves. the square of a. Although different 
experimental (V,T) curves for sodium chloride agree quite well, the corresponding 
values for a differ considerably, especially at high temperatures, giving very different 
values for K T • For this reason it would seem preferable to calculate KS; this has been 
done and compared with experiment in Figure 4. Agreement is not good but it may 
be pointed out that even the "experimental" values of KS are deduced from actual 
measurements of elastic constants, of which C12 is very uncertain, there being large 
differences between the values reported by different workers. From the mathe
matical point of view it may be pointed out that the sudden increase in the cal
culated values of K T , and KS above 950oK, which seems unlikely physically, can be 
attributed to the sudden decrease in d2Faldg2, as shown in Figure 1. 

In the case of the specific heat at constant volume, Figure 5 shows that inclusion 
of the cubic anharmonic terms has gone some way to restoring the good agreement 
with experiment obtained with the harmonic model and lost on inclusion of the 
quartic terms only. Once again, however, it seems unsatisfactory to compare theory 
with "experimental" results for Ov that have been obtained from measurements 
of Op by applying a correction a 2VTIKT depending on the square of the thermal 
expansion coefficient (and an uncertain KT)' Direct comparison with Op is possible 
since a theoretical expression can be obtained, which depends explicitly on a only 
linearly. The result is shown in Figure 6 and shows good agreement with experiment 
to a considerably higher temperature than for Ov' From a mathematical point of 
view a major cause of the discrepancies between theory and experiment at high 
temperatures seems to be the T2 terms Fi4) and Fi3 ). Their effect can be studied 
most easily in the case of 0 v and 0 p, which are not affected by the other anharmonic,. 
temperature-independent term F;4). Their omission thus leaves a harmonic model 
for the specific heats, and the dashed curve in Figure 6 shows that excellent agreement 
is then obtained for Op with the experimental results of Roth and Bertram (1929), 
while the curve for 0 v of the harmonic model F I also agrees with Hunter and 
Siegel's (1942) results. Now the coefficients of Fi4), Fi3) have opposite signs and so, 
unless they are known with considerably accuracy, it would seem preferable to omit 
these terms, leaving a harmonic model for 0 v' 0 p but an anharmonic one for a,. 

K T , and KS' 
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APPENDIX 

Theorem. If ,\,Ui are the eigenvalues and normalized eigenvectors of a non.singular 
matrix A, then, for any positive or negative integer n (or zero) 

2: "'7UiU[ = An. 
i 

Thus consider the matrix B = 2: u i uf, Then 
i 

BUj = 2: Ui u[u, = 2: U,. 8ij = u j 
i i 

for all u j so that B = J. 

Also AUi = "'iUi and, by multiplying this equation by (l/"'i)A-1, A-lUi = "'flUi 
and hence, for any positive or negative integer n 

But then 

An = AnB = 2: Anuiu[ = 2: "'?uiu[, 
i i 

which proves the theorem. 






