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Swmmwry 

A phenomenological scattering formula is used to investigate the effect of 
collision on the two·stream instabilities in a plasma of interstreaming electrons 
and ions. The result is that the enhanced Landau damping due to thermalized 
electron energy competes with the growth of the instability. 

INTRODUCTION 

When two interpenetrating streams in a plasma have relative mass motion, 
instability is produced by a klystron bunching effect. A perturbation in one stream 
thereby produces a spatial bunching of the second. This bunching can be spatially 
in phase or out of phase with the perturbing wave, depending on its wavelength 
and the relative velocity of the streams. This type of instability was first investigated 
by Haeff (1949) and by Pierce (1949) using a macroscopic moment equation. An 
examination of this interstreaming instability was also made by Jackson (1960) 
using the Boltzmann-Vlasov equation. Tidman (1961) considered the effect of a two­
body scattering in the instability using the Fokker-Planck scattering formula. In 
general there exists a range of wave numbers for instability when the relative velocity 
exceeds the thermal velocity of the streams. 

In the present paper we consider the effect of two-body scattering on the 
instability with the use of a phenomenological scattering formula developed by 
Bhatnagar, Gross, and Krook (1954). This scattering formula, which does not contain 
the diffusion nature in velocity space, may account for the gradual heating of the 
electron stream due to distant encounters with the Coulomb field of the ions at rest. 
It is shown that, as the kinetic energy of the stream is thermalized, the resulting 
enhanced Landau damping competes with the growth of the unstable perturbation. 

BASIC EQUATIONS AND ASSUMPTIONS 

The Boltzmann equations for the electron distribution functionj(r, v, t) and ion 
distribution function F(r, v, t) are given by 

and 

oj +v . oj _ ~E . oj = (OJ) , 
ot or m oV ot collision 

IJF +V IJF + ~E of = (OF) 
IJt . IJr M' oV ot collision' 

(1) 

(2) 

where m and M are the electron and ion masses with charge -e and +e respectively. 
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The electric field E is also given by 

V . E = 47Te J (F-f) dv. (3, 

We put 

f =fo+h and E = Eo+El with Eo = 0, (4) 

where suffix 1 corresponds to a small perturbation. 

Considering first the electron distribution function, this gives, on using the 
model of Bhatnagar, Gross, and Krook (1954), 

( Of) = A(<pl-f) , ot collision 
(5) 

with <p = no(mI27TklT)3/2 exp(-mv2/2hT), kl being the Boltzmann constant, and A 
the collision frequency; 

7:J!t0 = A(<p-fo); (6) 

and (on neglecting the non-linear terms) 

7:Jh 7:Jh e 7:Jfo 
- +v. - - - E1 . - = A(<pl-<P-h) 

7:Jt 7:Jr m 7:Jv ' (7) 

where 

with 

n = no+v, 

v = J iIdv, 

q = (lin) J viI dv, ) 

V . El = -47Tev. 
(8) 

Similar expressions are obtained for the ion distribution function. 

The solution of (6) gives 

fo(t) = <p+Uo(O)-<p}exp( -At). (9) 

From (7), on using (8) and neglecting terms containing products and higher powers 
of v, q, E 1, and iI, we obtain 

()iI 7:JiI e ()fo {(v m ) } -+v.---E1 .-= A - + -v. q <p-ft. 
()t ()r m 7:Jv no kiT . 

Also, from the condition of charge conservation, 

where 

7:Jv +n (). q = 0 
7:Jt 0 7:Jr ' 

q = (l/no) J vh dv. 

(lO) 

(Il) 

(12) 
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TRANSFORMED EQUATIONS AND THE INITIAL CONDITIONS 

We use the following Fourier space transform and Laplace time transform 
defined by 

f+OO foo 
Aw = -00 dr dt exp{i(wt-k. r)}A, 

o 

(13) 

with Im(w} > 0, and find from (1O), after using (ll) and (12), 

lw = t\+i(lc~x-w}[{ f: exp(-ik. r}!I(O} drL 

+ ~~ vw+ ~~ VX{n: lc vw+ i~ (f v(O}exp( -ik . r) dr) J], (14) 

where k is in the x direction and the suffix x denotes the x component. 

We use the following initial conditions: 

Jo(O} = tno{8(v- U)+8(v+ U)} (15) 

and 

!I(O} = !nl{8(v-U)+8(v+ U)}exp(iK . r}, (16) 

where U is the velocity of the electron stream passing through an ion background, 
and nl ~ no. With these conditions relation (14) reduces to 

A(x}vw = B(x}vw+iA+C(x}, (17) 

where 

2 222 
A(x} = (x +Wp-t\ }/x , 

2 2 2 2 2 2 22 
B(x) = Wp{y (3x +y }/x (x +y ) }, 

and 

(18) 

with 

x = t\-iw, 2 _ lc2U2 Y - x, and 2 2 
wp = (4rre no/m). (19) 
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CALCULATION OF v(t) 

In this section we consider two approximate cases. 

(a) Approximation where t -)0- 00 

In this approximation Vw+iA = 0, and we subsequently find 

-At f 3 2 2 e xt X +'\(x +y ) 
v(t) = v(O) ~ dx e 2 2 2 2 2 

1Tl C (x +y )(x +wp-'\ ) 

k2U~ J 
- 2 2 2 2 cos(kUxt) , 

wp-k Ux -'\ 
(20) 

where we put v(O) = nl exp(iK . r) and the corresponding inverse operator of (13), 
that is, 

(277)-4 f~oo dk f dw exp{ -i(wt-k . r)} 
c 

(21) 

is used. The integral over C goes from - 00 to + 00 above all singularities of vw. 

(b) Approximation where vw+iA(x) = vw(x)+i'\{ovw(x)/ox} 

Under this assumption, we find from (17) 

(ovw/ox)-a(x)vw = (3(x), 

where 

and 

The solution of (22) is given by 

vw(x) = Loo dx' (3(x')exp { - 5:' a(x") dx"}. 
\Ve define 

and 

y(X) = l/'\a(X), 

.222222 222 
WIth x /y = X ,Wp/y = W , and ,\ /y = E • 

(22) 

(23) 

(24) 

(25) 
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Thus (24) can be written in the form 

foo d [ {IX' dX"}] vw(X) = (27T)38(k-K)nl dX' a(X') - -exp - -_. 
X dX' 00 Ay(X") 

n r'S 

In all orders of A, poles are at zeros of 

that is, 

xi = 1-(4jW2)[l+0(W-2,€2)], 

x~ = - W 2[I+(BjW2){I+0(W-2, e2)}], 

x~ = _(€2jW2)[I+0(W-2, €2)], 

with W > 1 and € < 1. 

Now we restrict to t > 1 and this will correspond to the pole 

Define s = X-I, so that one gets on using (28) 

I+2€ -2 2 [1 ] a(s) = W2 {I+O(W ,€)} -; + const. +Os+ ... , 

and 

[ 2 { 0 2W -2 -4] 1 2 y(s) = -2 1+ (€ ,W)} - (I-s+Os ... ). 
(1+W ) s 

Thus we find 

3 (I+2€)[1 {(-I) 2 } vw(s) = (27T) 8(k-K)nl --2 - +€ -3- ---2 (I-s+ ... ) 
W s s 1+ W 

00 1] +0 ~ 2n+1 . 
n=ls 
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(26) 

(27) 

(28) 

(29) 

(30) 
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Finally, we get with the use of the inverse operator (21) and after performing 
the integrations 

2 2/ 2 2 3 4 2 v(t) = v(O)(k Ux wp){1-(4/3)'\ kUxt +0('\ ) ... }exp{(kUx)t-(kUx'\)t}. (31) 

For the other limit, that is, t < 1, we have 

(32) 

DISCUSSION 

The expansion in terms of electron collision frequency leads to the terms in t. 
We now consider in general the expression (31). It can be seen that the term, 

which results from the interaction between the electric field of the wave and the 
scattered electrons in the stream, will oppose the growth of the instability. Thus 
the wave will lose energy to these particles, and so this process can be assumed to be 
an enhanced Landau damping. 
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