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Summary 

The problem discussed is that of combining interrelated data which refer 
to the calibration and intercomparison of a group of standards, to give best 
estimates for the values of the standards together with their reliabilities. A resume 
is given of least squares in matrix notation, which is particularly suited to com
putations using automatic computers, and this technique is applied to results 
obtained over a period of 15 years at the Bureau International des Poids et Mesures 
and the National Standards Laboratory, in the calibration and intercomparison 
of five I m reference line standards of length. One of these scales was a platinum
iridium prototype (No. 20), while the remainder were in nickel or 58% nickel-steel. 
The analysis yields time-dependent values, where appropriate, for the lengths of 
the scales together with their variances, and an estimate of the observational 
variance. The estimate of the observational variance, (0·077 /Lm)", is based in part 
on "external consistency", as the data used in the analysis were obtained in more 
than one laboratory. 

I. INTRODUCTION 

Where a number of reference standards have been in use for some time, and 
have been individually calibrated on a number of occasions and compared with 
each other from time to time, the questions naturally arise of the best values to be 
associated with the standards, and the reliabilities of these values. The answers 
to these questions are of particular interest when the observations come from more 
than one laboratory, since the results can then lead to reliable estimates of consistency 
between laboratories and to more realistic estimates of accuracy. 

The interrelationships between the various observations can be very complex, 
particularly in the case where the standards are unstable. To arrive at the "best" 
values for the standards at any time, it is necessary to combine all the information 
available, while making allowance for particular circumstances such as instability, 
unequal reliability, or correlations between the observations. 

The appropriate way of arriving at the "best" estimates in the situation 
described above would seem to be by a least-squares treatment. Further, and this 
is perhaps more relevant here, the sizes of the residuals from any least-squares 
solution, or statistics calculated from them, are an excellent guide to the reliability 
of the measurements. 

The technique of least squares has been used for decades in adjusting and 
combining observations. However, solutions involving even small numbers of 
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unknowns require formidable computations and, while for small numbers it is 
reasonable to undertake solutions using a desk calculator, the use of an automatic 
computer considerably lightens the task and makes it possible readily to undcrtake 
solutions involving very large numbers of unknowns. 

The size of problem that can be handled on a digital computer is limited by 
the memory capacity of the machine and by the accuracy required in the solution, 
together with the amount of machine time available. There are several ways in 
which limitations of memory capacity and accuracy can be overcome, and so the 
effective limitation is that of machine time. 

For the purpose of computation on a digital computer, the formulation of the 
least-squares solutions in matrix notation is ideal. Not only does the matrix approach 
lead to a highly systematic and general set of relationships for the design and for 
the solutions. but also it gives the variances and covariances of the improved 
estimates with very little additional calculation once the solutions have been 
obtained. 

In the following sections, a brief resume of the matrix formulation of least 
squares is given, and an analysis is made of a comprehensive set of data relating 
to observations made over a period of 15 years, at the Bureau International des Poids 
et Mesures and the National Standards Laboratory, on a group of 1 m reference 
line standards. 

The approach adopted here is a general one and suitable for application to any 
set of data that shows the type of dependencies already discussed. The data could 
refer to anyone of a number of different types of standards, such as resistance, 
capacitance, mass, etc. 

II. LEAST SQUARES IN MATRIX NOTATION 

Let the results YI' Y2, ... , Ym of m observations be related to the quantities 
Xl' X 2, ..• , Xn by the expectations 

n 

E(Yi) = 2: aij Xj 
.i~1 

(i = 1,2, ... ,m), 

where the aij are constants and form the design matrix [aij ], A say, of order mxn. 

Writing 

both column matrices, we have in matrix notation 

E(Y) = Ax. 

Making the restriction that the observed values yare independent and have equal 
variances a 2, we may write the dispersion matrix in the form 
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the least-squares solutions are then 

with the variance-covariance matrix given by 

In general a 2 is unknown, and its unbiased estimate 8 2 is given by 

yTy -xT ATy 
8 2 = . 

m-n 
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Rigorous treatments using matrix notation of least squares in the linear case 
will be found in the works of Plackett (1960) and Guest (1961), and these include 
the important case of dependent observations. 

III. LEAST-SQUARES ANALYSIS FOR A GROUP OF REFERENCE LINE STANDARDS 

Since 1948 the National Standards Laboratory (N.S.L.) has maintained a 
number of 1 m line standards as reference standards of length. Until the intro
duction of the wavelength standard these line standards embodied the primary 
standard of length for the Commonwealth of Australia. 

The information relating to the lengths of these scales is contained in a complex 
set of relationships between the lengths of the scales, which are the result of direct 
comparisons made from time to time at N.S.L., and also in their relationships with 
the prototype metre, determined through calibrations at the Bureau International 
des Poids et Mesures (B.I.P.M.) and on one occasion by the National Physical 
Laboratory (N.P.L.). The complexity of the information lies in the fact that the 
scales are of unequal age, and the periods they have been under surveillance vary. 
Further, the majority of the scales are known to be unstable in length, and this 
adds greatly to the difficulty of determining the appropriate value for their length 
at any time. 

At the beginning of the period, the set consisted of a pair of 58% nickel-steel 
scales, 4028 and 4756(1), both calibrated by B.I.P.M. The original set was augmented, 
firstly by a nickel scale 79, then by another 58% nickel-steel scale 172/62, and 
finally by the reruled platinum-iridium prototype No. 20. The nickel scale and, 
of course, the prototype, were initially calibrated by B.I.P.M. Owing to corrosion 
damage, one of the original pair of nickel-steel scales required to be reruled, and 
this resulted in an unfortunate discontinuity in the knowledge of its behaviour. 
The reruled scale is designated 4756(II). 

Details of the calibration and intercomparison of the set of scales are given 
in Table 1, together with additional information which will be discussed later. 

We now proceed to obtain the solutions for the data given in Table 1. 

The error in the length of a scale is assumed to be given by an equation of the 
form 

where Li is the error at 20°C in the length of the ith scale at date d (expressed in years 
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and decimals of a year), and the ai and bi are constants of the expression that are 
to be estimated by the least-squares solution. The lengths of all the scales are 
assumed to be adequately represented by this form of expression, with the exception 
of prototype No. 20 which is assumed to be stable and so lacks the time-dependent 
term. It is known that the nickel-steel scales are unstable, and it would be unwise 
to assume stability for the nickel scale. In the absence of information other than 

TABLE 1 

OBSERVED AND CALCULATED VALUES* (ELEMENTS OF y) 

Observational standard deviation 0·077 f'm 

Scale Authority 

4028 B.I.P.M. 
4028 B.I.P.M. 
4756(1) B.I.P.M. 
4756(II) B.I.P.M. 
79 B.I.P.M. 
79 N.P.L. 
20 B.I.P.M. 
4028--4756(1) N.S.L. 
4028--4756(1) N.S.L. 
4028--4756(1) N.S.L. 
4028-79 N.S.L. 
79-4756(1) N.S.L. 
4028-4756(II) N.S.L. 
4028-172/62 N.S.L. 
4028--79 N.S.L. 
4756(II)-172/62 N.S.L. 
4756(II)-79 N.S.L. 
172/62-79 N.S.L. 
172/62-79 N.S.L. 
172/62-4028 N.S.L. 
20--79 N.S.L. 
20--4028 N.S.L. 
79-4028 N.S.L. 

* Referred to 20°C. 

t See text. 

Date 
Observed Value Calculated Value 

(f'm) (1Lffi) 

1948·96 -2·19 -2·253 
1957·04 -3·02 -2·988 
1952·71 -0·67 -0·635 
1961·96 -0·13 -0·130 
1957·25 2·11 2·115 
1957·54 2·06 2·108 

-t 1·31 1·253 
1957·21 1·94 1·956 
1955·87 2·05 1·957 
1957·96 1·93 1·956 
1957·96 -5·18 -5·170 
1957·96 3·23 3·214 
1962·37 -3·31 -3·261 
1962·37 -5·62 -5·566 
1962·37 -5·55 -5·468 
1962·37 -2·26 -2·305 
1962·37 -2·30 -2·206 
1962·37 0·09 0·098 
1961·62 0·24 0·206 
1961·62 5·59 5·624 
1963·79 -0·64 -0·708 
1963·79 4·73 4·855 
1963·79 5·51 5·564 

Residual 
(f'm) 

-0·063 
0·032 
0·035 
0·000 
0·005 
0·048 

-0·057 
0·016 

-0·093 
0·026 
0·010 

-0·016 
0·049 
0·054 
0·082 

-0·040 
0·094 
0·008 

-0·034 
0·034 

-0·068 
0·125 
0·054 

the data alone about the degree of the curve to be fitted, the justification of a model 
is its success in fitting the data points, the model of least degree that adequately 
fits the data being the one chosen. While in the present case the data are hardly 
adequate to fit anything but a linear model, as will be seen later, the fit is good. 
Under these conditions extrapolation will be as good as is possible. 

Prototype No. 20 is of the same melt as the original prototypes, and it can 
be reasonably assumed that, in the very short period between the B.I.P.M. calibration 
(June-September 1960 and January 1963) and its inclusion in the N.S.L. series 
(1963·79), any drift will be negligible. 
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From the data of Table 1, the design matrix is the 23 row by 11 column matrix 

A= 0·96 0 0 0 0 0 0 0 0 0 
1 9·04 0 0 0 0 0 0 0 0 0 
0 0 4·71 0 0 0 0 0 0 0 
0 0 0 0 1 13·96 0 0 0 0 0 
0 0 0 0 0 0 9·25 0 0 0 
0 0 0 0 0 0 9·54 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 

-1 -9·21 9·21 0 0 0 0 0 0 0 
-1 -7,87 7·87 0 0 0 0 0 0 0 
-1 -9·96 1 9·96 0 0 0 0 0 0 0 

1 9·96 0 0 0 0 -1 -9·96 0 0 0 
0 0 -1 -9·96 0 0 1 9·96 0 0 0 

14·37 0 0 -1 -14·37 0 0 0 0 0 
14·37 0 0 0 0 0 0 -1 -14·37 0 

1 14·37 0 0 0 0 -1 -14·37 0 0 0 
0 0 0 0 1 14·37 0 0 -1 -14·37 0 
0 0 0 0 1 14·37 -1 -14·37 0 0 0 
0 0 0 0 0 0 -1 -14·37 14·37 0 
0 0 0 0 0 0 -1 -13·62 13·62 0 

-1 -13·62 0 0 0 0 0 0 1 13·62 0 
0 0 0 0 0 0 -1 -15·79 0 0 

-1 -15·79 0 0 0 0 0 0 0 0 1 
-1 -15·79 0 0 0 0 15·79 0 0 0 

The column vector x is given by 

x = [all bl , a2, b2, a3, b3, a4, b4, a5, b5, a6]T, 

where the correspondence between the scales and the constants is as given in Table 2. 

TABLE 2 

ESTIMATES OF COEFFICIENTS AT 20°C 

Scale 
a i bi 

(I-'m) (I-'m m-1 yr-1 ) 

4028 1 -2 ·166 -0·0910 
4756(1) 2 -0·204 -0·0915 
4756(II) 3 2·649 -0·1991 
79 4 2·333 -0·0235 
172/62 5 4·497 -0·1672 
20 6 1·253 

.---~------

The observational vector is 

Y = [-2·l9, -3'02, -0·67, ... , 5·51Y. 

It is assumed that the elements of y have equal weights, that is, that they 
are independent and have equal variances. While the data have been obtained over 
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a considerable length of time and at different laboratories, techniques applied in 
the comparison of line standards differ little, and should have remained sufficiently 
stable for the assumption of equal variances to be reasonably made. The results 
of the solution can be used to test this assumption, but unfortunately in this case 
the test is necessarily inexact. The solutions are then given by the last three equations 
of Section II. 

The whole of the least-squares solution was carried out on a digital computer. 
The core of the solution is the inversion of the matrix AT A, and this was undertaken 
by the "elimination" method (see, for example, Kunz 1957). 

On post-multiplication by ATy the inverse yields the estimates X, the eom
ponents of which are listed in Table 2. 

The estimate of the observational variance 82 was 0·005917 fLm2 , giving a 
standard deviation of 0·077 fLm, the estimate being based on 12 degrees of freedom. 

Multiplication of the inverse by 8 2 then gives the dispersion matrix D"" the 
diagonal elements corresponding to the variances and the off-diagonal elements to 
the covariances. 

4028 4756(1) 4756(II) 79 172/62 
,-----J----., ,-----J----., ,.-~ r--A-______ ~ 

a 1 b1 a. b. a. b. a4 b4 a. b. 

D. = (1O-7p.m') 56608 

-5123 642 

1290 -1184 233872 

638 208 -27592 3551 

548924 -131862 524589 -119890 14492452· 

-39321 9446 -37578 8588 -10232902 722681 

40171 -5676 -6692 742 1639543 -117446 223235 

-3856 649 -585 186 -210687 15092 -19357 1828 

48389 -5400 -2700 689 5667879 -406008 131698 -11606 18268155 

-4489 645 -884 197 -507075 36323 -12516 1238 -1301547 92983 

-15000 3193 -11110 2534 -1073465 76896 -43956 5298 -29475 4245 

* The accuracy of the solution is not sufficient to give the value of this last place. 

As the matrix D", is symmetric about the diagonal, only the lower triangular 
matrix has been reproduced here. 

Substitution of the estimates x in the expressions Ax gives estimates of the 
observed values, and these, together with the residuals from the observed values, 
are given in Table 1. 

IV. DISCUSSION AND CONCLUSION 

The variances to be associated with the estimates from the regression lines are, 
of course, time-dependent and are given by the propagation of variance formula 

Var(Li ) = Var(ai )+(d-1948)2. Var(b i )+2(d-1948). Cov(ai,bi)· 

20 

a6 

44764 
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Substitution then leads to the following: 

Var(4028) = 0·005661 +0· 0000642(d-1948)2-0· 00lO246(d-1948), 

Var(4756 I) = 0·023387 +0·0003551(d-1948)2-0·0055184(d-1948), 

Var(4756 II) = 14·492452+0· 0722681(d-1948)2-2· 0465804(d-1948), 

Var(79) = 0·022324+0· 0001828(d-1948)2-0· 0038714(d-1948), 

Var(172/62) = 1·826816+0·0092983(d-1948)2-0·2603094(d-1948), 

where the unit is /Lm2. 
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On first inspection ot the time-dependent variance equations, the impression 
may be gained that the variances, in some cases, are very large indeed. Since a 
common time, the year 1948, has been chosen as the origin for all the regression 
equations, the constant terms in the right-hand side of the variance equations will 
be large in those cases where the first observations occur at times much later than 
1948. In these cases, however, the covariance term has a substantial negative value 
during the observational period, and the variances over these periods are much smaller 
than the values at the origin. 

The expressions for the time-dependences of th~ lengths have a varying degree 
of usefulness that depends primarily upon the length of time that the scale has 
been under observation. The values of the variances for 4756(II) and 172/62 show 
that these two scales have been under observation for much too short a period for 
any reliability to be placed upon the predictions from their regression lines. 

The results of the adjustments do not answer unequivocably the question of 
the stability of the nickel scale 79. A test of the slope of this regression line against 
the hypothesis of zero slope showed it to be almost significant at the lO% level. 
The normal interpretation of this result would be that there is insufficient evidence 
to say that the scale is unstable; the effect on the model, however, is small. 

The sizes of the individual residuals are all satisfactorily small. The estimate 
of the observational standard deviation, 0·077 /Lm, is to be compared with the 
value O· 1 /Lm which is usually spoken of as the ultimate accuracy with which line 
standards can be compared using visual microscopes. This estimate of the obser
vational standard deviation is of some importance as it is based, in the main, on 
data from two laboratories, that is, it is an estimate based in part on "external 
consistency" rather than purely "internal consistency". Birge (1957) and Youden 
(1962) have discussed at some length the importance of estimates based on external, 
rather than internal, consistency. 

The form of the design matrix in this case does not lend itself to a rigorous 
test of the assumption of equal variance for the results of the different laboratories. 
However, estimation of the variances for B.I.P.M. and N.S.L. separately from the 
residuals, using degrees of freedom based on a partitioning of the total number of 
degrees of freedom in the ratio 7 : 16, leads to an F ratio of 2 ·16. To be significant 
at the 5% level this ratio is required to be of the order 6, while to be significant 
at the 1 % level it would have to reach 15. It is certain then that, whatever the actual 
degrees of freedom for the two estimates, the F ratio would not reach a significant 
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value, and it must be concluded that the results show no evidence to contradict 
the assumption of equal variance for the observed values. 

The result of the present adjustment indicates that it would be practicable 
and indeed desirable to undertake an adjustment on a much wider basis. The 
inclusion' of the prototype metres in a least-squares adjustment would appear to be 
valuable at present, when the relationship between lengths based on the prototypes 
and on the wavelength definition are under discussion. 
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