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SAINT-VENANT'S PRINCIPLE IN ANISOTROPIC MEDIA* 

By R. B. NOYEst 

Saint-Venant's principle may be stated (Sternberg 1954): "An equilibrated 
system of external forces applied to an elastic body, all of the points of application 
lying within a given sphere, produces deformations of negligible magnitude at 
distances from the sphere which are sufficiently large compared to its radius." 

Although Saint-Venant's principle has been known and used for over 100 years, 
a general proof and a method of estimating the distance from the disturbance at which 
deformations become small in specific cases has only recently been given for isotropic 
media (Boley 1958). Boley showed that Saint-Venant's principle is a consequence 
of the elliptic character of the governing differential equations, and estimated the 
"smoothing distance", or distance from the disturbance at which deformations become 
small, by making use of an upper bound to the Green's function for the problem. 
In a later paper (Boley 1960), it was shown that in certain cases in which the differen
tial equation of the problem is parabolic Saint-Venant's principle may still apply. 

It does not appear to be well known, however, that anisotropy may cause signi
ficant changes in the smoothing distance of a disturbance. For example, Lenkhnitskii 
(1963) remarks in the early pages of his book that he will invoke Saint-Venant's 
principle in order to simplify the statement of certain problems, but does not comment 
upon the effect of anisotropy on Saint-Venant's principle. 

Because of the high degree of anisotropy of certain structural materials (e.g. 
fibre-reinforced composites), it appears desirable to investigate the order of magnitude 
of smoothing distance necessary to the application of Saint-Venant's principle in such 
media. 

We choose in the first instance to examine this problem in a very simple case 
of steady-state heat transfer. Consider the problem of two-dimensional heat con
duction in a semi-infinite bar of width b, thin in the z direction. Let the principal 
axes of thermal conductivity coincide with the bar axes, and let the sides and edges 
of the bar be insulated. The differential equation for the problem is (Carslaw and 
Jaeger 1959, p. 41) 

o2T o2T 
KX2 +KY2 =0, 

ox oy 
and its solution can be shown to be 

~ {n1TY(Kx)!} n1TX T (X,y) = L... an exp - -b- K cos -b-' 
n=O Y 
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where T is temperature, Kz and Ky are the thermal conductivities in the x and y 
directions respectively, and b is the breadth of the bar. 

Let us impose at the end of the bar a disturbance 

27TX 
T(z,o) = Tocosb, 

which has null net heat input and, because of its symmetry about the bar centre 
line, hail also null net "moment" of heat input. (This disturbance could be super
imposed upon any specified temperature distribution T(z,O) at the end of the bar to 
obtain a new temperature distribution T(z~o) which would be "statically equivalent" 

to T(Z,O)') 
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Fig. l.-Position in a semi·infinite anisotropic thin bar at which the 
disturbance T(x.o) = To COS(27TX/b) has essentially (99%) disappeared. 

The solution corresponding to the specified disturbance is 

T(z,y) = Toexp{- 2:(~:r}cos2;X. 
Weare particularly interested in the maximum temperature which occurs for 

any value of x at a specified distance from the end of the bar, and which is given by 

Tmax(y) = Toexp{- 2:(~:)l 
Selecting some particular value for Tmax (for example, 1 % of To), which we will 

consider to have reduced the disturbance to negligible magnitude, we may calculate 
the smoothing distance for the problem. These distances are shown in Figure 1. 
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This simple example is given to illustrate the existence of, and to give some 
idea of, the magnitude of the effect of anisotropy upon Saint-Venant's principle. 
In geometrically complicated anisotropic heat conduction problems, where an exact 
solution is not so easily given, an upper bound to the smoothing distance may be 
constructed by using the transformation suggested by Carslaw and Jaeger (1959, 
p. 44) and the method of Boley (1958). 

Discussion and Conclusion 

Provided that the principal thermal conductivities are non-zero, anisotropy 
does not change the elliptic character of the equation of steady-state heat conduction, 
and Saint-Venant's principle applies. It will be noted from Figure 1 that in an iso
tropic material the disturbance in question has essentially (99%) disappeared in about 
three-quarters of a bar width. 

However, as Figure 1 shows, anisotropy may significantly increase or decrease 
the smoothing distance, depending upon the orientation of the higher conductivity 
axis with respect to the bar axis. It may be noted that in the limiting case where 
Ky becomes zero, Saint-Venant's principle holds with a smoothing distance of zero. 
If Ka; becomes zero, Saint-Venant's principle does not apply. 
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