
DIFFUSION OF HEAT FROM A SPHERE TO A SURROUNDING MEDIUM* 

By A. BRowNt 

In a recent paper, Philip (1964) discussed a heat flow problem in which, as an 
idealization, spherical symmetry is assumed and the medium is regarded as composite, 
with a spherical core of one material embedded in a larger mass of a second material. 
One application in mind was to laccoliths, where an intrusion of igneous rock in sedi
mentary material can produce dome-shaped bulging at the surface. The idea of 
treating this as a problem involving spherical symmetry was put forward by Lovering 
(1935), who gave a solution for the case where the core and its surroundings are taken 
as uniform. In a subsequent paper, Lovering (1936) considered in more detail what 
variations in the thermal conductivity and diffusivity are to be expected. From the 
figures he quotes, a composite model should give a better approximation, though 
remaining a considerable simplification of the physical problem. 

In Philip's model, the outer region is taken to be infinite in extent, and at 
time t = 0 the core and the outer region are each at a constant temperature, with the 
core at a higher temperature than its surroundings. Philip showed that solutions for 
the temperature and the heat flux at the interface between the two regions could be 
developed as series expansions, and gave the first few terms of these expansions both 
for small and large values of t. 

The present paper gives some additional results for the same problem. In 
particular, the temperature at any point is given as an infinite integral. Although this 
integral converges for any time t greater than zero, the convergence is more rapid 
when t is large. For small values of t, a more convenient solution is obtained in the 
special case where the thermal conductivity of the two materials is the same although 
their diffusivities differ. It is possible to extend this solution to a number of related 
problems, and these extensions are outlined in the final section of the present paper. 

Notation and Method of Solution 

We take the spherical core as the region 0 <; r <; a, where r is the distance from 
the centre, and use K l , kv Tl for the conductivity, diffusivity, and temperature in 
the core, with K 2, k2' T2 as the corresponding quantities in the outer region. The 
relevant equations for T 1 and T 2 are then: 

oTl = k (02Tl+ ~ OTl) 
ot 10r2 ror 0< r < a; (1) 

oT2 = k (02T2+~ OT2) r > a; 
ot 20r2 ror (2) 

Tl = T 2, Kl(oTl/or) = K 2(oT2/or), at r = a; 

at t = o. 
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For convenience, the initial temperature in the outer region has been taken as the 
zero level for Tl and T 2 , and we shall take To to be a positive constant. Additional 
restrictions which affect the form of Tl and T2 are that Tl must be finite at r = 0, 
and T2 must tend to zero as r approaches infinity. 

If 1\ and T2 are the Laplace transforms of Tl and T2 with respect to t, that is, 

Ti = f Ti(r, t) exp( -pt) dt (i = 1,2), 

then it can be shown that 

T = TO[I_ K 2(I+q2 a)sinhq1r ], 
1 P r{Klqlcoshqla+(K2q2+K)sinhqla} 

T = To [K1(ql a coshql a - sinhql a) exp{ -q2(r-an] 
2 p r{K1 ql COshql a +(K2 q2 +K)sinhq1a} , 

where 

(3) 

(4) 

(5) 

(6) 

Equations (3) and (4) are equivalent to equations (3.6) and (3.7) of Philip's paper 
(Philip 1964). However, the notation follows more closely that of Carslaw and 
Jaeger (1939), who considered a somewhat similar problem of heat transfer in a 
composite system with spherical symmetry. 

Carslaw and Jaeger (1939) also used the Laplace transform method, and obtained 

transforms with essentially the same denominator as in 1'1 and T2 above. To invert 
these transforms, they used the standard inversion integral (Churchill 1958, p. 176), 
and integrated around a suitable contour in the (complex) p-plane. In this way, they 
obtained solutions for the temperature in a form involving real integrals. In the 
present problem, their procedure can be taken over with only minor variations, and 
this gives solutions for T 1 and T 2 in the form 

where 

Tl = 2Qa fro (sin u - u cosu) sin(urja) exp( -kl u2 tja2) d 
To 7Tr 0 (ucosu + Lsinu)2+(Qusinu)2 u, 

T2 = 2a foo (sinu - ucosu) F(u)exp( -kl u2tja2) du 
To 7Tr 0 (ucosu + Lsinu)2+(Qusinu)2 u' 

F(u) = (u cos u + Lsin u) sin{u(r-a)jaa} + Qusin ucos{u(r-a)jaa}, 

Q = K2jKl a, L = (K2-K1)jK1 , a = (k2jkl)t. 

(7) 

(8) 

It will be seen that the integrals involved are of Fourier type, in that separable 
solutions of equations (1) and (2) are combined in suitable proportions to satisfy the 
boundary conditions and initial conditions. For example, equation (7) is of the form 

Tl = f G(u) {(ljr) sin(urja) exp( -kl u2tja2)} du, 

where the expression in braces is a separable solution of equation (1) for all values of 
u, and G(u) can be regarded as an amplitude factor. 
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Temperature and Heat Flow at Interface 

The temperature at the interface, which we denote by T*, can be obtained by 
putting r =a in either equation (7) or equation (S). This gives 

T* = (2QTo(-rr) f~ (1 (D2)(sin u - ucos u) sin uexp( -kl u 2t(a2) d1t, (9) 

where D2 = (ucosu + Lsinu)2+(Qusinu)2. 
Similarly, the heat flux from the core to the exterior region can be obtained from 
either of equations (7) and (S). If we use H'(t) for this heat flux, then 

H'(t) = -4-rrK1 a2(aTl(ar)r~a = -4-rrK2a2(aT2(ar)r~a 

=SToaK1Q f~ {(sinu-ucosu)2/D2}exp(-k1u2t/a2)du. (10) 

By integrating from 0 to t, we get the heat loss from the core after time t as 

H(t) = SToa3K1Q/kl f {(sinu-ucosu)2/u2D2}{I-exp(-k1u2t/a2)} duo 

As t -+ 00, the temperature in the core will tend to zero, and H(t) must approach Ho, 
where H 0 is the total amount of energy which the core can lose by heat flow to the 
surrounding material. Now 

Ho = (core volume) X (density) X (specific heat) X (initial temperature difference) 

The density and specific heat here are those appropriate to the core and, since 

diffusivity = (thermal conductivity)/(density X specific heat), 

(11) 

we can use Kl/kl instead of (density x specific heat) in equation (11). It follows that 

and 

f~ {(sinu -UCOSU)2/u2D2} du = -rr/6Q, 

(Ho-H)/Ho = fraction of total heat flux from core that has yet to 
occur at time t 

= (6Q/-rr) f~ {(sin u - ucos U)2/u2D2} exp( -kl u 2t/a2) duo (12) 

For large values of t, the integrals in equations (9), (10), and (12) can be 
approximated by an asymptotic expansion in descending powers of t. In the case of 
equation (9), for example, the asymptotic expansion is obtained by expressing 
(I/D2)(sin u - u cos u) sin u as a power series in u, and integrating the new form of the 
integrand term by term. The resulting expansion for T* agrees exactly with the 
asymptotic expansion given by Philip (1964, equation (6.4)). Similarly, the asymp
totic expansion for H'(t) from equation (10) agrees with Philip's equation (6.5), and 
the asymptotic expansion for (Ho-H)/Ho confirms Philip's conclusions regarding the 
equilibration time of the composite system. 
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Temperature Distribution for Kl = K2 

The expressions for Tl and T2 given by equations (7) and (8) are valid for all 
positive values of t, but it is clear that they converge more rapidly when t is large 
than when t is small. In the case where Kl = K 2, equations (7) and (8) can be 
supplemented by series solutions which converge more rapidly for small values of t. 

If we put Kl = K2 in equations (3)-(6), then K = 0 and 

T = TO[1 (l+q2 a)sinhq1 r ] 
1 P rql{coshq1a + (lja) sinhq1a} , 

(13) 

T = To [(ql a cosh ql a - sinhq1a) exp{ -q2(r-a)}] 
2 p rql{coshq1a + (lja) sinh ql a} , 

(14) 

since a = (k2jkl)t = qljq2' These Laplace transforms can be inverted to give 
solutions for Tl and T2 in terms of the error function and its integral. One way of 

inverting Tl and '1'2 is to express the hyperbolic functions in terms of exponentials and 
replace {coshq1a + (lja)sinhq1a}-1 by a series expansion in powers of exp(-2ql a). 
An example of this procedure is given by Carslaw and Jaeger (1959, Chap. XII, 
§ 12.5). An alternative method, which leads into some interesting by-ways, is to 
use the result that, if 

then 

G(t) = H f: F(u) exp( -u2j4t) du (t > 0), 

where F(p) is the Laplace transform of F(t). However, the first method is simpler 
and more direct. 

To write the solutions for Tl and T2 compactly, we introduce the notation 

Eo(x) = erfcx, E1(x) = ierfcx = f: Eo(u) du, 

PN = {Na+t(a-r)}j(klt)t, QN = {Na+!(a+r)}j(klt)t, 

RN = {Naa+!(r-a)}j(k2t)i. 
Then 

Equations (15) and (16) agree with the solution given by Lovering (1935). As 
mentioned earlier, he treated the core and its surroundings as if they were of the same 
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material. (In his numerical work, he used an average value of the thermal conduc
tivity and of the diffusivity.) With this assumption, kl = k2 and hence a = 1, so 
the series for Tl and T2 terminate, giving 

with 

Tl/To = 1-(a/2r){Eo(Po)-Eo(Qo)} -(l/r)(kl t)i{El(PO) -El(QO)} , 

T2/To = (a/2r){Eo(Ro) +Eo(Rl)} -(I/r)(kl t)i{El(Ro) -El(Rl)}' 

Po = -Ro = t(a-r)/(k1t)t, 

Using the relations 

Eo( -x) = 2-Eo(x), 

E 1( -x) = 2x+E1(x), 

El(X) = -xEo(x)+17- i exp(-x2), 

it is easy to verify that 

which agrees with Lovering's solution. 

When Kl = K 2, the integral in equation (7) simplifies slightly, since L = 0 
and Q = l/a. Hence, for Kl = K 2, 

Tl = 2aa foo (sin u - u cos u) sin(ur/a) exp( -kl u2 t/a2) du (17) 
To 17r 0 u2(a2cos2u+ sin2u) . 

Equations (15) and (17) now give two strikingly different expressions for the ratio 
Tl/To. Similarly, equation (8) may be used to give an infinite integral for T2/To as 
an alternative to the series on the right-hand side of equation (16). 

Temperature and Heat Flow at Interface for Kl = K2 

The temperature at the interface can be obtained by putting r = a in either 
equation (15) or (16). Since Eo(O) = 1 and E1(O) = 17-i , we get 

T* = aTo{l_(~)(klt)i}+ 2aTo ~ (l-a)N-l{E (P*) 2(k2t)i E (P*)} 
1 +a a 17 (l +u)2 L 1 +a ° N + a 1 N , 

N~l 

where P; = value of P N at interface = Na/(k1t)'. 

Similarly, the heat flux from the core can be obtained from either equation (15) or 
equation (16). This gives 

H'(t) = 417aKl T O[(a_l)+ a2-2ak~ t 
l+a a(17klt). 

+ ~ 2(I-a)N-l{Na2+2akl t E (P*) +a2+2k2t E (p*)}]. I::i (1 +a)N kl tON a(kl t)i 1 N 

These expressions for T* and H'(t) can be compared with equations (7.2) and 
(7.3) of Philip's paper (Philip 1964), noting that Philip's symbols B, T, 8(1), and rJ> 
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are equal, respectively, to aj(l+a), kltja2, T*jTo, and (47TaKl TO)-l H'(t) of ~he 
present paper. The comparison shows, in the higher order terms, discrepancies which 
arise because of the omission of a bracket in equation (4.1) of Philip's paper. Dr. 
Philip (personal communication; see also Philip 1965) has kindly supplied me with 
amended forms of the equations affected by the missing bracket, and our results 
are now in agreement. 

Related Problems for Kl = K2 

A well-known device for dealing with heat conduction problems where there is 
spherical symmetry is to use variables U1 = rTl and U2 = rT2' in place of Tl and T 2 • 

Then U1 and U2 satisfy the standard diffusion equation for linear flow of heat, that 
is, instead of equations (1) and (2) we get 

In general, linear flow solutions cannot be taken over unaltered, because the boundary 
conditions at the interface are 

(18) 

whereas in a linear flow problem the boundary conditions are 

(19) 

Carslaw (1921) illustrates this point by quoting a Cambridge tripos question in which 
the answer supplied was wrong because (19) had been used when (18) was the appro
priate pair of equations. But in the special case where Kl = K 2, the distinction 
between (18) and (19) disappears and the corresponding linear flow solution can be 
taken over unchanged, if a linear flow solution is available. Where a solution of the 
corresponding linear flow problem is not immediately available, there may be standard 
techniques which give a solution readily. Thus, in any heat conduction problem 
involving a composite material with spherical symmetry, it may be possible to 
obtain a detailed solution for the case Kl = K 2, and thus obtain some preliminary 
information about the heat flow, even where it is difficult to find a solution in the 
general case. 

In the problem with which we are concerned, the initial conditions are that 
U1 = rTo, for ° <; r < a, and U2 = 0, for r > a. In addition, U1 must be zero at 
r = 0, and U 2 must approach zero as l' --+ 00, for t > 0. The justification for the latter 
requirement is that, for large values of r, T2 should behave like the solution for a heat 
source at the origin at t = 0, with subsequent diffusion into an infinite medium. Hence, 
we can expect to have T 2 ", t-3 j2 exp( -r2j4k2 t) for large values of rand t greater 
than zero. It follows that U2 must tend to zero as r approaches infinity. 

An equivalent problem is to find the temperature in an infinite rod with a 
central portion, -a < x < a, which is of different material from the remainder, given 
that the initial temperature is xTo in the central portion and zero outside the central 
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portion. To correspond to the restriction KI = K 2, the conductivity must be un
changed along the rod. Then the solution of the linear flow problem for 0 < x < a 
corresponds to U1 , and the solution for x > a corresponds to U2• In the linear flow 
problem, taking the conductivity to be different in the two media adds no essential 
difficulty; if the Laplace transform method of solution is used, the transforms that 
have to be inverted are of the same type as those in equations (13) and (14). 

The heat flow problem where the core is initially at a uniform temperature can 
be related to problems where the core contains a heat source. For example, if heat is 
produced at a constant rate in the core, and if the core and its surroundings are 
initially at zero temperature, the subsequent temperature distribution can be 
obtained by integrating Tl and T2 with respect to t, and multiplying by a suitable 
factor to allow for the strength of the source. This solution in turn can be used to 
solve the case where the strength of the source decays exponentially with time. 
Thus, although the model considered is restrictive in its assumptions, it can be 
regarded as fundamental to a wider range of problems. 
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