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Summary 

A complete classification of the state of two·electron atoms is given in terms 
of a set of symmetrized Euler.angle functions, and the matrix of the kinetic energy 
derived for this choice of states. For a state of given L, 1T, Ps the non-relativistic 
Schr5dinger equation reduces to a finite set of coupled equations in the internal 
coordinates rl' r2• r12 ; these equations are given for arbitrary L, 1T, Pi;. The results 
apply to atomic two-electron systems with nuclei of finite mass, and more generally 
to any non-relativistic three-body system in which two of the particles have equal 
mass. 

1. INTRODUCTION 

Recently (Kalotas and Delves 1964) a complete classification of the states of 
the three-nucleon system in terms of a set of symmetrized spin-isospin Euler-angle 
functions Y i has been given. Such a classification has the advantage that for a 
state of given total angular momentum J, parity 7T, and neutron excess T., the 
wave function if; has the form 

rfr!,'Ir,T. = ~ fi(r12 , r23, r31 ) Y i . 
i 

(1) 

The sum in (1) is finite and so the non-relativistic Schrodinger equation for if; in the 
centre-of-mass system, reduces from a six-dimensional to a finite set of three
dimensional coupled equations, with consequent overwhelming saving in labour. 

A similar classification is possible for the two-electron system, which in 
general aspects is simpler. The non-relativistic Hamiltonian for two electrons in 
the Coulomb field of a nucleus is spin independent; hence we need not consider 
the electron spins. We give then a complete symmetric classification of the Euler
angle states of the two electrons, together with the resulting· set of differential 
equations for the internal functions fi of equation (1). 

There is no unique choice of Euler-angle functions; however, it is desirable 
that any choice made should take note of the exact constants of motion for the 
problem. These constants of motion include 

(i) the orbital angular momentum L and projection m L> 

(ii) the parity 7T, 

(iii) the symmetry P s of the space state under permutation of the two electrons. 
Here a symmetric space function is associated with a singlet (para) spui 
function and an antisymmetric space function with a triplet X ortho) 
spin function. 
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The standard classification of two-electron states is due to Breit (1930), who 
wrote an expression of the form. (1) for P-states. However, his choice of Euler angles 
was quite unsymmetrical, making the construction of eigenfunctions with the correct 
symmetry very difficult. With our choice of Euler angles each term in (1) will have 
the appropriate symmetry and we shall therefore be able to deal with the state of 
general (L, 7T, Ps). Recently, Bhatia and Temkin (1964) have made an analysis 
similar to ours but assumed the nucleus to be fixed. Although their method of 
construction of the Euler-angle functions is different, the actual Euler angles they 
use are only trivially different and our results reduce to theirs in the limit of infinite 
nuclear mass. 

In the following section we define our choice of Euler angles and construct a 
set of angular eigenfunctions Y i of L2 and Lz with appropriate behaviour under 
the operations of time reversal, parity, and particle permutation. In Section III 
we give the kinetic energy operator in terms of the triangle Euler-angle coordinates 
and ca,lculate the internal kinetic energy matrix. 

II. THE CHOICE OF BODY AxES AND THE SYMMETRIZED EULER-ANGLE FUNCTIONS 

The configuration of two-electron atoms in the centre-of-mass system, is 
determined by the six coordinates in r l , r 2 representing the electron positions relative 
to the nucleus, or alternatively by the triangle Euler-angle coordinates r l , r 2, r12' 

a, fJ, y. These coordinates are defined by 

while we define the Euler angles a, fJ, y as in Derrick and Blatt (1958); that is, 
a set of body vectors b l , b 2 giving the positions of the electrons relative to body 
axes, are related to the vectors r l , r 2 in the space frame by 

k = 1, 2, 

where A, B, 0 are elementary rotation matrices given by 

A(.) ~ r -:::: :: J cosfJ Si~fJl ' 
cosfJ -sinfJ 

O(y) = A(y). 

The criteria for a useful set of body axes are: 

(a) simple behaviour of the angular functions Y i of (1) under operations of 
parity and electron exchange, 

(b) simple form for the kinetic energy. 

We shall choose the body axes in the following way. 

(i) The two electrons lie in the body x-y plane with the nucleus at the origin. 

(ii) The positive body x-axis bisects the smaller angle 012 subtended at the 
nucleus by the two electrons. 
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(iii) Particle numbering is such that a rotation from 1 to 2 is clockwise when 
looking along the positive body z-axis. 

A typical triangle body axis configuration is shown in Figure l. 

The above specification of coordinates is unique except when the nucleus and 
the two electrons lie in a straight line, in which case the body axes and hence the 
Euler angles remain undefined. The singular region of phase space requires special 
care in calculations involving the above coordinates. As in the three-nucleon case, 
this imposes restrictions on the form of the internal functions Ii in this region; these 
restrictions will be considered in later work. 

body-y 

2 

Nucleus 

--~-4'''-:-h,,:---;-------+--------~body-x 

1 

Fig. 1.-A typical configuration showing the position of the body axes. 

We now proceed, as in Kalotas and Delves (1964) to construct a set of sym
metrized Euler-angle functions of given angular momentum Land z component m L' 

Explicitly we define the function 

Y;;'L(PE ,I",I,(7T)) = il/MPE ({2L+1)i/47T}€".O X [D{;.r.mL(a,{1,y) +( -1)L+PE D-{;.I,mL(a,{1,y)]. 
(2) 

Here the D;.(a,{1, y) are the representation coefficients of the three-dimensional 
rotation group appearing in Kalotas and Delves (1964). Further 

if P E = symmetric (8). 

= 1, if PE = antisymmetric (a), 

€",' = 1/\1'(28",.). 

7T is a superfluous index denoting the parity and is + (-) if", is even (odd). Thus of 
the 2L+1 functions Y i of fixed Land m D L+1 (or L) are of even parity if L is 
even (or odd) and the remainder have odd parity. 
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The various functions Yi are orthonormal, that is, 

and satisfy the time reversal reality condition 

(3) 

The functions are either symmetric or antisymmetric under interchange of the two 
electrons (the mixed representation is irrelevant to our case) 

Hence any wave function of orbital angular momentum L, z component m L' parity 7T, 

and permutation symmetry P s , may be written in the form 

(4) 

In the sum (4) the number fL is restricted to even (odd) values according as 7T is 
+ (-). The symmetry PRof the internal functions must be chosen so that 

Hence the internal functions have the same (or opposite) symmetry as the corres
ponding Euler-angle functions for para (or ortho) states. Equation (4) constitutes 
our symmetric decomposition of the two-electron wave function. 

In the work of Bhatia and Temkin (1964), the body axes are defined in a different 
way to ours but their Euler angles 8, rp, if; are nevertheless closely related to our 
a, {3, y through 

{3 = 8; y = rp. 

This leads to symmetrized angle functions that are very similar to our Y i . 

III. THE KINETIC ENERGY 

For the situation corresponding to two electrons each of mass m and a nucleus 
of mass M, the kinetic energy operator in the centre-of-mass system may be written 

T = -(n2j2fL)(Vi+V~)-(n2jM)Vl. V2• 

Here fL is the reduced electron mass mMj(m+M), while for k = 1,2 

V k - ajark 

(5) 

We give here the form of the kinetic energy in triangle Euler-angle coordinates. 

In the fixed nucleus approximation M -+ 00 and 

T -+ -Wj2m)(Vi+ V~). 

For energy calculations of the helium isoelectronic series it is reasonable to consider 
the mass polarization operator -(n2jM)Vl. V2 as a perturbation term. We shall 
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treat this term exactly but for convenience deal separately with the two operators 

To _ (VI+V~), 

T12 - VI' V2• 

As the transformations are lengthy, we give only the final results. For convenience 
we give also the matrix elements of these operators defined by 

(6) 

where Q is any operator in general. The essential results are given below. 

(a) The Transformed Operators To, T12 

(i) We find that the operator To takes the following form in triangle Euler
angle coordinates 

where 

+r:1-;2r£{ (~fn)( ~;n) +( ~;n)( ~n)} (9) 

T4 = (rI-r~)cos 1J12 ( L~ ) (10) 
o 4r1 r 2 tl -in' 

The components of the angular momentum operator LB appearing in the above 
expressions, are discussed in the Appendix. We have also used the notation 

R2 - ri+r~, 

tl - triangle area = ir 1 r 2 sin 1J12, 

while 1J1 and ()2 are angles defined through Figure 1. T~ is a pure S-state operator, 
while T~, Tg, and T~ contain angular derivatives and so give zero when applied to 
S-state functions. 

(ii) Similarly we find that T12 takes the form 

T12 = T~2+TI2+Ti2' 
where 
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(13) 

Tis is here the S-state part of Tu-

(b) The Matrix Elements of To and TIS 

As noted above, the orthogonality of the Euler-angle functions allows us to 
integrate out the Euler-angle dependence. We give here the reduced matrices of 
the operators To and T12 as defined by equation (6). 

(i) We let i,j stand for the groups of indices L, mL> IILI, PE and L, mL> IIL'I, P~ 
respectively and calculate the matrix elements T1fu for w = 1, 2, 3, 4. Since LS 
and L. commute with the kinetic energy, Land m L are taken the same in i and j. 
Thus we get 

with 
(14) 

(15) 

{ I I R2 cos 812} 
+31"I,I,,'1-2 3PE,PE' E".O N L( IL) I6~s 

+31,,1.2_1,,'1 3PE •PE'{ E".O EI"I.2 ( -1 )L+I"I+PE N L( -IILI) R2IC;~~12} 

{ - r~-ri } 
+31,,1 , 1,,'1-2 3PE.PE' E".O (-I)PE N L(IILi> 8r1 rs~ 

+31,,1.2-1,,'13PE ,PE'{ E".O EI"I.s (_I)L+I"I N L( -IILI) ;::~:i}, (16) 

4 {~ I I (ri-r~)cos 812} 
TOii = 31,,1.1,,'13PE.h' (-1) E IL 4rlr2~ . (17) 

We have used the shorthand 
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Also 

PE = adjoint symmetry of PE = a, 
=8, 

if PE = 8, 

if PE = a. 
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(ii) With i, j as in (a) above, we write the matrix elements Tf2U for w = 1, 
2,3 as 

T3 . = S , S '{I 12 cos (J12+{L(L+l)_1 12{1r2cos(J12} 12>' 11'1.11' 1 PE,PE IL 4r r IL S~2 
1 2 

+SII'I.II"I-t-2 SPE.PE,{N L( -IlL!) €11'1.2( - ;~~22) } 
+SII'I.II"I-2 SPE.PE,{N L(IIL!) €I'.o( - ;~~~) } 

IV. THE COUPLED EQUATIONS FOR THE INTERNAL FUNOTIONS 

The non-relativistic Hamiltonian for two-electron atoms has the form 

H = -li2To_li2T12+e2(~_~_~), 
2IL M r12 r1 r2 

(IS) 

(1~) 

i (20) 

(21) 

where Z is the nuclear charge parameter and -e the electron charge. We decompose 
the wave function in the form (4) above and write 

i = L, mL, IILI, PE' 

j = L, mL> IIL'I, P~. 

Then for any operator Q we may write 

Qifi = Q(',E!iYi) , 
= ',E ',E Q,diY', 

j i 

where Q'i is the reduced matrix of the operator Q as defined by (6). In ',E, i runs 
i 

over a set of variables V, detennined by specified L, mL> Ps, and 7r. Setting 

11,2 11,2 
Q = T = - 2ILTo- MT12 

leads to Q u = 0, unless j is in the set V and, further, j exhausts V for all non-zero 
Qji. We may thus write the Schrodinger equation in reduced form as 
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and hence for all i in V 

(23) 

Equation (23) constitutes a set of coupled equations for the internal functions fi' 
For later convenience we also give here explicitly the form that these coupled 
equations take on carrying out the implied matrix multiplication, in the limit of 
infinite nuclear mass (that is, keeping the operator To only). A typical member of 
the coupled set has the form 

+ [( -l)r;E[fL[ (ri-r§) {cos 812 +sin812 ~}Jffn/PR' [fL[) 
r1r2 4Ll r12 or12 

+ [EII'I.2 N L( - [fL[) R21c;~~12Jf;;L (PR, [fL[ -2) 

+ [EI'.oN L([fL[) R21c;~~I2JffnL (PR, [fL[ +2) 

[ ~-~J -+ (-1)L+11'1 EI"O EII'I.2 N L( -[fL[) 8r
I 

r2Ll ffnL (PR, 2- [fL[) = O. 

On interpreting this equation, the following points should be noted. 

(i) We have used the convention 

if K < 0 or K > L. 

(24) 

(ii) Apparently eight functions are coupled into a single general equation (24) 
but this is reduced to six when it is noted that if [fL[ -=F 2 one of [fL[-2 
or 2-[fL[ is negative and hence the corresponding two functions are 
identically zero by (i). 

(iii) The set of equations is explicitly real and hence the set of functions fi 
may be chosen to be real. This is a consequence of the choice of phase 
for the Y i satisfying the time reversal reality condition (3). 
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ApPENDIX 

Angular Momentum Operators referred to Body Axes 

Let da, dfJ, dy be infinitesimal increments in the Euler angles a, fJ, yand use 
the vector notation to write 

da 
a 
oa 

da= dfJ 
a a 

oa = ofJ 

dy 
a 

oy 

It follows readily (Goldstein 1959) that the resulting infinitesimal rotation referred 
to body axes is given by 

dOB = Sda, 
where S is the matrix 

cos a SinaSin fJ] 

cosasinfJ . 

cosfJ 

(A 1) 

-sin a 

Let L be the orbital angular momentum for the two electrons (in the space system) 
and refer it to body axes by 

[
XB • L] 

LB - YB L, 

ZB L 

where X B, Y B' ZB are body axis unit vectors. Then it follows, after some elementary 
analysis that, 

(A 2) 
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We define the useful operators Lg, 14, u .. by 

Lg =14, } (A 3) 

and these operators give the following results when acting on the representation 
coefficients D~.mL(a, {J, 1') 

} (A 4) 




