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UNSTEADY HEAT TRANSFER IN CHANNEL FLOW* 

By 1. J. KUMARt and BALKRISHANt 

The study of heat transfer in channel flow at high fluid velocities is important 
owing to its application in the design of rocket nozzles and jet pipes. The problem 
retains its importance even at moderately high velocities where, for the study 
of heat transfer processes, one may consider the heating gas as an incompressible 
fluid, e.g. in the flow of gases through rocket combustion chambers and the initial 
heating of a heat regenerator. The study also finds an application in the theory of 
internal ballistics for calculation of heat transfer to a gun barrel during firing. 
No analytic solution can be derived for such problems, because the flow and energy 
equations for the fluid in such cases are coupled nonlinearly owing to convective 
terms. Though a number of steady-state problems of the above type have been 
studied with boundary-layer approximation, very few exact solutions are known. 

Recently, Johnson (1961) has studied an exact solution to the problem of 
heat transfer in parallel fluid flow over a conducting half-space, the fluid being 
considered viscous and incompressible and with the assumption of continuity of 
flux and temperature at the solid-fluid interface. Here we discuss a solution, 
suitable for small values of time, to the problem of heat transfer between two 
solid walls JzJ > 1 and an in-flowing incompressible fluid in the channel JzJ < 1, 
assuming the conditions of flux continuity and convective heat transfer across the 
interface. It is further assumed that fluid is set in motion impulsively with a 
uniform velocity along the channel. Since the velocity distribution in the above 
problem satisfies a diffusion type of equation for which a solution is available in 
the literature, such a solution can be substituted in the energy equation for the fluid 
to obtain the temperature-time history. 

For the problem stated above, the flow and energy equations for the fluid 
and the solid are: 
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Boundary Conditions: 

From the symmetry of the problem, we may write the boundary conditions 

for z > ° as 
u=o z = 1 t > 0, (7) 

OU = ° 
OZ 

z=o t > 0, (8) 

K oTl _ K oT2 
1 OZ - 2 OZ Z = 1 t > 0, (9) 

Kl 0Jzl +H(T1-T2) = 0 z = 1 t > 0, (10) 

oTl = 0 
OZ 

z=o t > 0. (Il) 

In all the above, the subscripts 1 and 2 refer to the fluid and solid respectively, 
and subscript ° refers to the initial value. The remaining symbols have their usual 
meaning. 

The solution of the partial differential equation (1) with boundary and initial 
conditions (7), (8), and (4) is (Carslaw and Jaeger 1948) 

[ ~ n{ ((2n+I)l-z) ((2n+I)l+Z)}] u(z, t) = U o 1-L.. ( -1) erfc 2(vt)} + erfc 2(vt)! . 
n~O 

Substituting this in (2), we get 

where 

and 

gtmn = 2z2+2lz(2m+2n+2)+l2¢~n' 

gtmn = 2z2+2lz(2m-2n)+l2¢~n> 

g§.mn = 2z2-2lz(2m+2n+2)+l2¢~n' 

gtmn = 2z2-2lz(2m-2n)+l2¢~n' 

Let '1 be the Laplace transform of T, defined as 

T = J 0
00 

T exp( -pt) dt. 

(12) 

(13) 

(14) 

(15) 
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The Laplace transforms of (13) and (3) are therefore given respectively as 

(16) 

and 
(17) 

the bar over the right-hand side of (16) meaning the Laplace transform of the 

expression under the bar, where 

q2 = p/k, 

k = K/pc. } (18) 

Taking the Laplace transform of the double sum of line sources on the right-hand 
side of (16) is justified, since the double series can be easily proved to be uniformly 
convergent by application of Dini's test and the integral test for convergence of 
double series (Bromwich 1942). Equation (16) can therefore be put in the form 

where 
(Eckert number), 

(Prandtl number), 

and Ko is the modified Bessel function of the second kind of order zero. 

The solutions of (19) and (17) with boundary conditions (9)-(11) are 

where 

1\ = ~(1- hCOShqlz) 
To p b.psinhqll 

T hK' ~ = -exp{ -q2(z-l)} (21) 
To pb.p , 

b.p = ql +hK' + h coth qll, 

h = HjKI' 
K' = (K I jK2)(k2 jk l )t. 

To obtain the values of TIjTO and T2jTO for small values of time, we expand the 
integrands (after Carslaw and Jaeger 1948) for large values of p. The series for 
T I and T 2 are quite complicated, and we therefore retain the first few terms only, 
whose inversions with respect to Laplace transformation provide a solution useful 
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for small values of time. It may, however, be remarked that the exponential terms 
of the type exp[ -ql{(2n+l)l+z}] have been neglected for n > 1, and the inversions 
for all the terms retained are available at Appendix V of Carslaw and Jaeger (1959). 
Thus we get 

2 1 

~: = 1- L L i-:-~;{erfc(2(~:St)l)-eXp{h(K'+I)Zns+klth2(K'+1)2} 
8=1 n=O 

X erfc(2(~:St)' +h(K' +1)(k1 t)!) } 

-i: (K'~1)2{erfc(2(~:St)!)-2(K'+I)h(k~tr exp ( -41:t) 
8=1 

xexp{h(1 +K')ZlS+ kl th2(K' +1)2} 

X erfc(2(~:St)! +h(K' +1)(k1 t)t) } 

+ 2!;~ i i (_I)m+n i: f (fi+~k~;-zr exp ( (fi+~k:~-Z)2) 
m=O n=O r=1 

where Zns = (2n+l)l+( -1)Sz; 

X exp[h(K' +1){(kl/k2)i(z-l) +2l}+ kl th2(K' +1)2] 

X erfc((k1/k2)i(z-l) +2l +h(K' +1)(k t)!)} 
2(k1 t)! 1 . 

(22) 

(23) 

To obtain the heat transfer rate at the surface, H(T1-T2), we have to get 
Tl and T2 at Z = l. For this purpose, it is convenient to put Z = l in equations 
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Fig. I.-Surface heat transfer rate hl(Tl -Tal/To plotted 
against small values of kl t/la, for various values of hl. 

(20) and (21) and then to apply the inversion theorem. This gives 

~~IZ~1 = 1-K*~1 (1-eXP{h2(K* +1)2 ki t} erfc{h(K* +l)(kI t)t}) 

- K,2+ 1 {erfc((k:t)t) -exp{2lh(K* +1)+ ki th2(K* +1)2} 

X erfc((k:t)t +h(K* +l)(kl t)!) } 

(K* ~1)2{ erfc((k:t)!) -2h(K* +l)e~t)! exp ( - ::t) 

-{1-2hl(K* +1)-2h2(K' +1)2kI t} 

X exp{2hl(K* + 1) +h2(K* + 1)2 ki t} 

X erfc (( k: t)l +h(K' + 1 )(ki t)l) } ; 

~:IZ~1 = K~~l (1-eXP{h2(K* +1)2 kIt} erfc{h(K* +l)(kl t)!}) 

- (K:!*l) 2 {erfC ((k:t)i) -2h(K* +l)(k~tr exp ( -::t) 

-{1-2hl(K' +1)-2h2(K' +1)2 ki t} 

xexp{2hl(K* +1)+h2(K' +1)2 ki t} 

Xerfc((k:t)t+h(K'+l)(kIt)t) }. 
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(24) 

(25) 
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Figure 1 exhibits the non-dimensional heat transfer rate hl(TI-T2)/To plotted 
against values of kl t/l2 for several values of the non-dimensional heat transfer 
coefficient hl. These results have been computed for l = 1, (kl/k2)t = 0 ·1, and 
K' = 0·1. 
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