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Summary 

Mesons are treated as bound states of a quark and an antiquark. Several 
models are given in which the interaction between quark and antiquark is described 
by a potential, and the motion of the quarks is described by the Klein-Gordon 
equation. Different relations among the masses of mesons within a multiplet are 
obtained for different models. The same relation among masses obtained from 
non-relativistic Schrodinger equation models can be obtained for particular Klein
Gordon equation models either among masses or among squares of masses. 

I. INTRODUCTION 

A number of authors (Dalitz 1965; Morpurgo 1965; Sinanoglu 1966) have 
considered a model in which mesons are bound states of a quark and antiquark 
(Gell-Mann 1964; Zweig 1964). Treating the motion of the quark and antiquark as 
non-relativistic, these authors have obtained relations among the masses of the 
mesons, and, in comparing the relations with experiment, they have arbitrarily 
replaced masses by squares of masses in order to obtain better agreement with the 
experimental results. 

Macfarlane and Socolow (1966) have expressed doubt whether experiment 
really favours the use of the squares of masses in meson mass formulae. However, 
although the experimental evidence is inconclusive, we believe that the tentative 
evidence favours relations among the squares of meson masses rather than relations 
that are linear in the masses. 

One possible defect of the non-relativistic model of Morpurgo, Dalitz, and 
others has been pointed out by Greenberg (personal communication 1965) and by 
Domokos and Palmer (personal communication 1966). This is that if two particles 
are deeply bound in a potential that is singulart at the origin, such as a Yukawa 
potential, the motion of the quarks is essentially relativistio. In this oase, not only 
should relativistic kinematios be used, but perhaps the very concept of a potential 
beoomes meaningless. 

It is the purpose of the present paper simply to explore the consequenoes of 
using relativistic kinematics in a desoription of a meson as a bound state of a quark 
and antiquark. We find that suoh a model can yield the Schwinger (1964) relation 
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between either masses or squares of masses, depending on the nature of the quark
anti quark interaction. 

It is assumed that the interaction between a quark and an anti quark can be 
described by a static potential of simple form and that the motion of the quarks is 
described by the Klein-Gordon equation. Thus, this model is a combination of 
relativistic kinematics and non-relativistic dynamics. The spins of the quarks are 
not treated correctly in the Klein-Gordon equation, but, since the potential is 
allowed to depend on the spin states of the quarks, this should not be a serious defect 
of the model. 

We ignore the question of the meaningfulness of a description by means of a 
static potential. Although perhaps some argument can be made that a Yukawa 
potential is more suitable than a square well, we choose the latter to make the 
calculations simpler. Thus, we do not explore in detail the question of how mass 
formulae depend on the shape of the potential as a function of the separation between 
quark and antiquark. Rather, we treat the question of how the results are affected 
by the way in which the potential is inserted into the Klein-Gordon equation. 

Domokos and Palmer have treated this problem relativistically by means of 
dispersion relations, and Horwitz (personal communication 1966) has considered a 
model in which the Dirac equation is used to describe the quark-antiquark motion. 

II. MODELS OF MESONS 

With no interaction, the Hamiltonian in the centre-of-mass system is 

(1) 

We shall use small m for the quark masses and capital M for the meson masses. 

All potentials are taken as very deep square wells of radius a. Using the 
approximation that the well is of infinite depth, the eigenfunctions of the Hamiltonian 
H are also eigenfunctions of p2. For, an infinite potential is equivalent to a condition 
on the eigenfunction 

Thus, 

,p(r) = 0 

,p(r) = jl(pr) 

r ~a. 

r <a, 

where 1 is the orbital angular momentum. For instance, for the lowest 8 state, 

p = 7TJa. 

(2) 

(3) 

(4) 

As in the work of Dalitz (1965), the interaction is assumed invariant under 
SU(3), and SU(3) is then broken by one quark having a mass m+Ll, heavier than the 
mass m of the other two quarks. 

An interaction between quark and antiquark that is invariant under SU(3) is 
specified by an octet potential and a singlet potential. The mesons are arranged in 
nonets, and it is convenient to use a representation of SU(3) X SU(3), since this 
correctly describes the meson states when the singlet and octet potentials are the same. 

There is no unique way of introducing a potential into the Hamiltonian (1). 
Several ways of doing this have been investigated, and we now give some examples. 
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Model I 

The potential is added to the free-particle Hamiltonian (1), giving 

H = Ho+V. (5) 

The masses of the mesons are given by the eigenvalues of H. m is the mass of the 
two quarks with Y = +1; m+~ is the mass of the quark with Y = 0, 1= 0; MI is 
the mass of the meson with isotopic spin I. Then, 

M t = (p2+m2)1+{p2+(m+~)2p+ Vs, 

Ml = 2(p2+m2)t+ Vs, 

where V s is the octet potential. 

(6) 

(7) 

If the singlet and octet potential were the same (V 1 = V S = V), then, for the 
two mesons with I = 0, 

(8) 

(9) 

The difference between V 8 and V 1 causes mixing of these two mesons, so that we now 
identify the masses of the two mesons having I = ° as M~ and M~, the two eigenvalues 
of the matrix 

(
2(P2+m2)i+lVS+iVl lJ2(Vl- Vs)ae ) 

(lO) 
l-,J2(V1- Vs)a:* 2{p2+(m+~)2}i+iVs+l-Vl 

Here a: is the overlap integral between the wavefunction of two quarks of mass m and 
the wavefunction of two quarks of mass m+~, when V 1 = V s. 

We then obtain (see Appendix) 

(M~-Ml)(M~-Ml)-~(Mt-Ml)(M~+M~-2Mt) 

= ~(M~+M~-2Mt)2(1-laeI2) ~ 0. (ll) 

The mass relation obtained by Dalitz (1965) from a non-relativistic model differs 
from equation (11) only because of the use of a different overlap integral. Dalitz 
uses the overlap integral between octet and singlet states of SU(3) with all quark 
masses equal. 

From 
(12) 

it is seen that, unless p2 is large and varies from multiplet to multiplet, d = Mt-M1 

should be the same for different multiplets. Experimentally, this is not the case, as 
is shown in Table 1, where we have used the masses from Rosenfeld et al. (1965). 

Model II 

The interaction between quark and antiquark is described by a potential tfo (of 
dimension of the square of an energy), which is added to Hij rather than to H o, so 

H2 = Hij+tfo. (13) 
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Following the procedure used for Model I, we obtain 

Mi = [(p2+m2)i+{p2+(m+~)2p]2+PS, 

M~ = 4(p2+m2)+cPS, 

and M~2 and M~2 are the two eigenvalues of the matrix 

Meson 
Nonet 

0-
1-
2+ 

(
4(P2+m 2)+t4>S+i4>1 

l.J2(4)1-4>S)r..* 

TABLE 1 

EXPERIMENTALt VALUES OF THE PARAMETERS d, 0, y, AND M1IMl 

d = Ml-Ml Il = M:-M~ y = M1(M1-M1 ) 

(BeV) (BeV2) (BeV2) 

0·358 0·227 0·178 
0·126 0·208 0·112 
0·081 0·221 0·114 

M1IMl 

3·59 
1·16 
1·06 

t Model I predicts that the values of d should be equal, Model II that the 
values of Il should be equal, Model III that the values of y should be equal, and 
Model IV that the ratios M.IMI should be equal for the 0-, 1-, and 2+ nonets. 

(14) 

(15) 

(16) 

From equations (14) and (15), it is seen that the difference in the squares of 
masses within a multiplet are of order m~, and, since the quark mass is large compared 
to all other masses, ~ is small. Neglecting terms of order ~3/m3, the matrix (16) can 
be written as 

(17) 

We then obtain 

(M~2-M~)(M~2-M~)-~(MI-Mr)(M~2+M~2-2Mi) 

= ~(M~2+M~2-2Mn2(1-1r..12)~ o. (18) 

For r.. = 1, this is the Schwinger relation (Schwinger 1964) for the squares of meson 
masses. 

Unless p2 is large and varies from multiplet to multiplet, the quantity 
0= Mi-Mr should be the same for all multiplets, according to this model. Experi
mentally, this is very closely the case for 0-, 1-, and 2+ meson nonets, as can be seen 
from Table 1. The constancy of 0 has been remarked by many authors (Coleman and 
Glashow 1964; Schwinger 1964; Dalitz 1965). 
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In this model, a very small difference in quark masses can cause a large difference 
in meson masses. 

Model III 

Another way to insert 4> into the Klein-Gordon equation is to write 

Then, 

H = (p2+mr+4»!+(p2+m~+4»!. 

M t = (p2+m2+4>s)!+{p2+(m+L1)2+4>s}!, 

M1 = 2(p2+m2+4>s)!, 

and M~2 and M~2 are the eigenvalues of the matrix 

We get the mass formula 

(M~2_Mi)(M~2-Mr)-~y(M~2+M~2_4y-2Mi) 

(19) 

(20) 

(21) 

= ~(M~2+M~2-4y-2Mi)2(I-11X12)~ ° , (23) 

where y = M t(Mt-M1). (24) 

This model gives a mass formula that is intermediate between the linear and quadratic 
mass formulae of equations (II) and (18). The quantity y can be expressed in terms of 
quark masses as 

(25) 

According to this model, y should be the same for different multiplets. In Table I, 
y is shown for 0-, 1-, and 2+ mesons. 

Model IV 

We assume H2 is given by 

H2=H5+2HV. (26) 

For m1 = m2, this model has the same non-relativistic limit, p2jm2 -+ 0, Vim -+ 0, 
as Model III. 

In the limit of large quark mass, m ~ M 1, we obtain 

(27) 

The ratio M tl M 1 is predicted to be the same for all multiplets, but this is not in 
agreement with the experimental masses as shown in Table I. 
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III. QUARK VELOCITY 

To investigate whether the quarks are moving non-relativistically, consider the 
state with ml = m2 = m. An estimate of the quark velocity is obtained by treating 
the Hamiltonian classically. Then, 

. oH 
q= op' (28) 

where q is twice the quark velocity. 

For Models I and IV, we have 

q=4p/Ho-+2p/m asp-+O, (29) 

so that it is possible to have deep binding and non-relativistic motion, and there is 
some justification for describing the interaction by an unretarded potential. 

For Models II and III, we have 

q = 4p/H = 4p/M, (30) 

and q <{; 2 only if a > 27T/M. The motion can be non-relativistic only if the radius 
of the meson is large compared with its Compton wavelength. Otherwise, for deep 
binding, the motion in Models II and III is essentially relativistic. 

IV. DISCUSSION 

It should be emphasized that the four models discussed here do not exhaust 
the possibilities, even with the restriction to extremely deep square wells. 

The result of Model II can be obtained by replacing masses by squares of masses 
in the expression obtained by Dalitz (1965), but this is not so for other models. 
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,ApPENDIX 

Derivation of Ef[!U1Jion (11) 

Writing the matrix (10) as 

we have, from equations (6) and (7), 

A = Ml+iW, 

B = lJ2Wa:, 

0=lJ2Wa:*, 

D=2Mt-M1+1W, 

where W = Vl- Vs- Now, M~ and M~are the eigenvalues of (10), so that 

M~+M~ = A+D = 2Mt + W_ 

Therefore, 

We aIBo have 

W = M~+M~-2Ml. 

(A-Mo)(D-Mo) = BO. 

605 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

Substituting for A, B, 0, and D from (32), (33), (34), and (35) respectively, and 
substituting for W from (36), we obtain 

This can be rearranged to yield equation (II). Since a: is an overlap integral, 1a:12 ~ I, 
and so the right.hand side of equation (II) is positive. Incidentally, since 1a:12 > 0, 
we have altogether that 

o ~ (Mo-Ml)(M~-Ml)-l(MI-Ml)(M~+M~-2Ml) ~ i(Mo+M~-2Mt)2. 
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