THE TAYLOR SERIES FOR THE CONVECTIVE CORE IN A STELLAR MODEL

By S. M. A. Megaitt*

[Manuscript received May 5, 1966]

Summary

Abstract

The first seven terms of the Taylor expansion about the centre for the solutions of a convective core with radiation pressure have been calculated. This truncated series can be used to calculate the values of quantities in the core for cores up to 40% of the radius and for radiation pressure up to $1-\beta_{c}=0 \cdot 2$.

I. Introduction

One method that has often been used for the construction of stellar models is to start numerical integrations simultaneously inwards from the surface and outwards from the centre of the star. The parameters (such as luminosity and radius) are then adjusted until the two integrations fit together at a suitable point, often the boundary between core and envelope.

In the case of a convective core (such as in a massive star), it has been shown (Henrich 1941) that the outward integrations can be made to depend on a single parameter, for instance y_{c}, the ratio of the radiation pressure to the gas pressure at the centre. It is then possible (e.g. Hayashi and Cameron 1962) to construct a table of integrations using a set of values of y_{c} and, whenever a convective core is required, to interpolate in this mesh of solutions.

Alternatively, See (1905) had considered the particular case of a convective model with no radiation pressure (a polytrope of index $1 \cdot 5$). He showed that the interior values could be obtained by taking sufficient terms in the Taylor expansion about the centre, thus eliminating the need for numerical integration in this case.

The present paper gives terms of the Taylor series, expanded about the centre, for a convective core in which radiation pressure is included. The series for the mass extends up to the fifteenth power and the series for y / y_{c} up to the twelfth power. These terms are sufficient to give values of variables in the core for stars of reasonable mass, even though the rate of convergence of the series decreases as radiation pressure gains in importance. Small cores can thus be fitted without numerical integration, apart from a quadrature for evaluation of the luminosity.

[^0]
II. Equations

The differential equations for a convective core with radiation pressure included are well known to be (Hayashi, Hoshi, and Sugimoto 1962)

$$
\begin{aligned}
\frac{\mathrm{d} M_{r}}{\mathrm{~d} r} & =4 \pi r^{2} \rho \\
\frac{\mathrm{~d} P}{\mathrm{~d} r} & =-\frac{G M_{r} \rho}{r^{2}} \\
\frac{\mathrm{~d}(\ln T)}{\mathrm{d}(\ln P)} & =\frac{8-6 \beta}{32-24 \beta-3 \beta^{2}}
\end{aligned}
$$

with

$$
\begin{equation*}
(1-\beta) P=\frac{1}{3} a T^{4}, \quad \beta P=\mathscr{R} \rho T / \mu \tag{1}
\end{equation*}
$$

The composition is homogeneous due to the convective mixing, so that μ is constant. At the centre $r=0, M_{r}=0$. Introducing as a variable $y=(1-\beta) / \beta$, the ratio of the radiation pressure to the gas pressure, one of the differential equations can be eliminated, leading to

$$
\begin{aligned}
\frac{\mathrm{d} M_{r}}{\mathrm{~d} r} & =\left(\frac{4 \pi a \mu T_{\mathrm{c}}^{3}}{3 \mathscr{R} y_{\mathrm{c}}^{2}}\right) r^{2} y \exp \left\{8\left(y-y_{\mathrm{c}}\right)\right\} \\
\frac{\mathrm{d} y}{\mathrm{~d} r} & =-\left(\frac{3 G_{\mu} y_{\mathrm{c}}}{\mathscr{R} T_{\mathrm{c}}}\right)\left(\frac{M_{r}}{r^{2}}\right)\left(\frac{\left(y / y_{\mathrm{c}}\right)^{\frac{1}{2}}}{5+40 y+32 y^{2}}\right) \exp \left\{-8\left(y-y_{\mathrm{c}}\right) / 3\right\}
\end{aligned}
$$

Finally, using the transformation

$$
\begin{aligned}
& \xi=r\left(\frac{4 \pi a G \mu^{2} T_{\mathrm{c}}^{2}}{3 \mathscr{R}^{2} y_{\mathrm{c}}}\right)^{\frac{1}{2}} \doteqdot \frac{\mu r T_{\mathrm{c}} / R_{\odot}}{2 \cdot 6 \times 10^{7} y_{\mathrm{c}}^{\frac{1}{2}}} \\
& \zeta=M_{r}\left(\frac{4 \pi a G^{3} \mu^{4}}{3 \mathscr{R}^{4} y_{\mathrm{c}}}\right)^{\frac{1}{2}} \doteqdot \mu^{2} M_{r} / M_{\odot} \\
& 1 \cdot 135 y_{\mathrm{c}}^{\frac{\ddagger}{2}}
\end{aligned}
$$

to remove the dimensioned quantities, the equations become

$$
\begin{align*}
& \frac{\mathrm{d} \zeta}{\mathrm{~d} \xi}=\left(\frac{y}{y_{\mathrm{c}}}\right) \xi^{2} \exp \left\{8\left(y-y_{\mathrm{c}}\right)\right\} \tag{2}\\
& \frac{\mathrm{d} y}{\mathrm{~d} \xi}=-\left(\frac{3\left(y / y_{\mathrm{c}}\right)^{\frac{1}{2}}}{5+40 y+32 y^{2}}\right)\left(\frac{y_{\mathrm{c}} \zeta}{\xi^{2}}\right) \exp \left\{-8\left(y-y_{\mathrm{c}}\right) / 3\right\} \tag{3}
\end{align*}
$$

with the boundary conditions $y=y_{\mathrm{c}}, \zeta=0$ at the centre $\xi=0$. The solutions depend on a single parameter y_{c}.

The first seven terms of the power series for y / y_{c} and ζ were obtained on a CDC 3600 computer, a program being specifically written in Fortran for the purpose. The method used was the following iterative one: given the expansion for y / y_{c} as far as the power ξ^{n}, this polynomial was substituted in the right-hand side of

Table 1
COEfficients in the series for ζ

p	m	a_{k}	b_{k}	k
3	0	1	3	0
5	1	$\begin{aligned} & -1 \\ & -4 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$	0 1
7	3	$\begin{array}{r} 1 \\ 47 \\ 96 \\ 6656 \\ 4864 \end{array}$	$\begin{array}{r} 12 \\ 21 \\ 5 \\ 105 \\ 105 \end{array}$	0 1 2 3 4
9	5	$\begin{array}{r} -25 \\ -4435 \\ -26164 \\ -721408 \\ -17801344 \\ -15337472 \\ -51613696 \\ -20283392 \end{array}$	$\begin{array}{r} 486 \\ 1701 \\ 567 \\ 1701 \\ 8505 \\ 2835 \\ 8505 \\ 8505 \end{array}$	0 1 2 3 4 5 6 7
11	7	95 36515 372278 526868 271817248 1635031424 890764288 1328226304 96979877888 22025076736 17948475392	$\begin{array}{r} 3564 \\ 16632 \\ 6237 \\ 567 \\ 31185 \\ 31185 \\ 4455 \\ 2835 \\ 155925 \\ 51975 \\ 155925 \end{array}$	0 1 2 3 4 5 6 7 8 9
13	9	$\begin{array}{r} -13595 \\ -250325 \\ -27391733 \\ -103779496 \\ -3111924704 \\ -10012093952 \\ -2353079962624 \\ -1590252163072 \\ -36620267831296 \\ -1400966742016 \\ -592265608167424 \\ -1578894872281088 \\ -86351676440576 \\ -162174341218304 \end{array}$	1111968 162162 486486 81081 173745 57915 2027025 289575 2027025 34749 10135125 30405375 3378375 30405375	0 1 2 3 4 5 6 7 8 9 10 11 12 13
15	11	103105 22610195 18528551 20821163516 1931663470768 26128164559136 254364989556992 838885745437696 83391815485751296 1013113089163526144 1010239672836161536 52596172527763456 50310836976544120832 52351506534442729472 35017599219008536576 13542207561335308288 209211988746698752	20015424 23351328 428652 15324309 76621545 76621545 76621545 34827975 638512875 1915538625 638512875 15324309 9577693125 9577693125 9577693125 9577693125 870699375	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$

Table 2
COEFFICIENTS IN THE SERIES FOR y / y_{c}

p	m	a_{k}	b_{k}	k
0	0	1	1	0
2	1	-1	2	0
4	3	$\begin{array}{r} 7 \\ 1 \\ 32 \\ 128 \end{array}$	$\begin{array}{r} 12 \\ 1 \\ 5 \\ 15 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
6	5	$\begin{array}{r} -25 \\ 25 \\ -1504 \\ -24064 \\ -11392 \\ -131072 \\ -212992 \end{array}$	$\begin{array}{r} 54 \\ 7 \\ 63 \\ 189 \\ 35 \\ 315 \\ 945 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$
8	7	$\begin{array}{r} 95 \\ -46835 \\ 56593 \\ 141668 \\ 2944448 \\ 2038144 \\ 40073216 \\ 316669952 \\ 258998272 \\ 92274688 \end{array}$	$\begin{array}{r} 324 \\ 4536 \\ 567 \\ 567 \\ 2835 \\ 405 \\ 2835 \\ 14175 \\ 14175 \\ 14175 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$
10	9	-13595 1088015 -11405893 14985064 -288128 -88542208 -5181129728 -52558508032 -24998674432 -54644965376 -3069068705792 -1785632653312 -470567354368	85536 74844 37422 18711 4455 4455 51975 155925 31185 42525 2338875 2338875 2338875	$\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$
12	11	515525 -8806625 48097165 -10402287095 21032110496 460548009536 1350492898816 3575168003072 240595609133056 218243374514176 13446443696128 978238039497136 191917660831744 14533168002284032 3949720644878336 4133613964623872	6671808 598752 785862 1702701 1702701 5108103 5108103 2837835 42567525 11609325 297675 127702575 2149875 212837625 127702575 638512875	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(2) and the expression expanded in powers of ξ; one integration gave a polynomial for ζ; substitution in (3) and a second integration gave the expansion for y / y_{c} up to the term in ξ^{n+2}. The alternative method of substituting a series with undetermined coefficients, and then solving successively for these coefficients, was not used because of the prohibitive amount of storage that would have been required. The series for T / T_{c} was obtained from the series for y / y_{c} by substitution in Henrich's expression

$$
\begin{equation*}
T / T_{\mathbf{c}}=\left(y / y_{\mathrm{c}}\right)^{\frac{2}{2}} \exp \left\{8\left(y-y_{\mathrm{c}}\right) / 3\right\} \tag{4}
\end{equation*}
$$

followed again by expansion in powers. Rational arithmetic was used throughout. The rational numbers were kept in their reduced form by using the Euclidean algorithm to calculate the greatest common divisor of numerator and denominator.

A partial check on the results was obtained by comparing the series for $T / T_{\mathbf{c}}$ in the limiting cases $y_{\mathrm{c}} \rightarrow 0$ and $y_{\mathrm{c}} \rightarrow \infty$ with the series for the Emden function. Letting y_{c} approach zero and replacing $2 \xi^{2} / 5$ by ξ^{2} leads to the Emden function with index $n=1 \cdot 5$, while replacing $\xi^{2} / 4 y_{\mathrm{c}}$ by ξ^{2} and letting y_{c} approach infinity leads to the Emden function with index 3. The Emden series for general n, up to the term in ξ^{20}, was derived separately on the computer. It was also found to agree in the case $n=1.5$ with the series given by See.

III. Numerical Values

Table 1 gives the exact rational coefficients of the series for ζ (the mass variable) in the form

$$
\zeta=\frac{1}{3} \xi^{3}-\left(\frac{\frac{1}{10}+\frac{4}{5} y_{\mathrm{c}}}{5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}}\right) \xi^{5}+\ldots+\left(\frac{\sum a_{k} y_{\mathrm{c}}^{k} / b_{k}}{\left(5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}\right)^{m}}\right) \xi^{p}+\ldots
$$

In a similar manner, Table 2 gives coefficients in the series

$$
\frac{y}{y_{\mathrm{c}}}=1-\left(\frac{\frac{1}{2}}{5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}}\right) \xi^{2}+\left(\frac{\frac{7}{12}+y_{\mathrm{c}}+\frac{32}{5} y_{\mathrm{c}}^{2}+\frac{128}{15} y_{\mathrm{c}}^{3}}{\left(5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}\right)^{3}}\right) \xi^{4}+\ldots
$$

and Table 3 gives coefficients in the series for T / T_{c}. Given two central values, such as T_{c} and β_{c}, and a point r in the core, the series then give directly y / y_{c} and M_{r}. Once y is known, T is in fact most easily obtained from (4), and P and ρ from (1).

The rates of convergence of the series in Tables 1, 2, and 3 decrease both as the distance from the centre of the star increases and as the radiation pressure increases. However, due to the regular behaviour of the terms, convergence can be substantially accelerated by using the e_{1} method described by Shanks (1955), which consists of applying the transformation

$$
S_{n}^{*}=\frac{S_{n+1}^{2}-S_{n+2} S_{n}}{2 S_{n+1}-S_{n+2}-S_{n}}
$$

to the sequence $\left\{S_{n}\right\}$ of partial sums. As an example, Table 4 compares the values of y and ζ, obtained from the series, with the values obtained by direct numerical integration of the differential equations (2) and (3). In each comparison, the first line gives the true value from the numerical integration, the second line gives the

Table 3
COEFFICIENTS in the series for T / T_{c}

p	m	a_{k}	b_{k}	k
0	0	1	1	0
2	1	-1	3	0
		-4	3	1
4	3	1	4	0
		10	3	1
		424	15	2
		1088	15	3
		256	5	4
6	5	-5	36	0
		-460	189	1
		-11624	189	2
		-12064	27	3
		-1932032	945	4
		-128000	27	5
		-4726784	945	6
		-622592	315	7
8	7	125	1944	0
		5165	6804	1
		47464	567	2
		438152	567	3
		20995456	2835	4
		116415232	2835	5
		693517312	4725	6
		4591812608	14175	7
		5835882496	14175	8
		11718098944	42525	9
		649068544	8505	10
10	9	-95	3564	0
		43135	149688	1
		-214919	2079	2
		-10360388	18711	3
		-437654144	31185	4
		-743760128	6237	5
		-39260081152	51975	6
		-58821050368	17325	7
		-332048728064	31185	8
		-1184764788736	51975	9
		-10697471688704	334125	10
		-4359484080128	155925	11
		-32193699119104	2338875	12
		-2297404850176	779625	13
12	11		6671808	0
		-453800	729729	1
		26789965	224532	2
		-981043270	1702701	3
		870515488	35721	4
		1018947275968	5108103	5
		48468218177536	25540515	6
		48451536705536	3648645	7
		587249080582144	8513505	8
		34324846021378048	127702575	9
		495667670422913024	638512875	10
		1042768401212112896	638512875	11
		4946707922026496	2027025	12
		45637075000623104	18243225	13
		1064163139886514176	638512875	14
		415458029845086208	638512875	15
		10379157837971456	91216125	16

sum of the first seven terms of the Taylor series, and the third and fourth lines give the result of applying the e_{1} transform once and twice respectively to the series. The distance from the centre ξ was chosen to correspond approximately with the core boundary of the massive homogeneous stellar model with the same value of β_{c} (Van der Borght and Meggitt 1963). The table also quotes the values of r / R at the core boundary and $\mu^{2} M / M_{\odot}$ for these models. Direct comparison with the tables of Henrich gave results of a similar order of accuracy.

Table 4
Comparison between true values of \boldsymbol{y} and ζ at point ξ
and values obtained from the series

$\begin{gathered} y_{\mathrm{c}} \\ \xi \end{gathered}$	$\begin{array}{r} \frac{1}{4} \\ 3 \cdot 94 \end{array}$	$6 \cdot 07^{\frac{2}{3}}$
\int True value	$0 \cdot 15011$	$0 \cdot 43896$
$y\left\{\begin{array}{l}\text { Sum of seven terms } \\ \text { of series }\end{array}\right.$	$0 \cdot 15012$	$0 \cdot 44008$
e_{1} method	$0 \cdot 15011$	$0 \cdot 43901$
e_{1}^{2} method	0.15011	$0 \cdot 43901$
T True value	9-7985	$22 \cdot 343$
$\zeta\left\{\begin{array}{l}\text { Sum of seven terms } \\ \text { of series }\end{array}\right.$	9-8612	$43 \cdot 817$
e_{1} method	9-7974	$22 \cdot 119$
e_{1}^{2} method	9.7985	$22 \cdot 340$
β_{c}	$0 \cdot 8$	$0 \cdot 6$
$\mu^{2} M / M_{\odot}$	$9 \cdot 8$	26.0
r / R	$0 \cdot 3885$	$0 \cdot 4965$

IV. Total Luminosity

The total energy produced in the star is obtained from the quadrature

$$
\begin{equation*}
L=\int_{0}^{R} 4 \pi r^{2} \rho \epsilon \mathrm{~d} r \tag{5}
\end{equation*}
$$

In the particular case in which ϵ can be approximated by $\epsilon_{0} \rho^{k} T^{s}$ and the model is a polytrope of index n, this integral has been evaluated by Hayakawa et al. (1956) in the form of the rapidly convergent series

$$
L=\epsilon_{0} \rho_{\mathrm{c}}^{k+1} T_{\mathrm{c}}^{s}\left(\frac{3 n+3}{n(1+k)+s} \cdot \frac{\mathscr{R} T_{\mathrm{c}}}{2 G \mu \rho_{\mathrm{c}}}\right)^{3 / 2}\left\{1+\frac{15}{8}\left(\frac{3 n}{5}-1\right)\left(\frac{1}{n(1+k)+s}\right)+\ldots\right\}
$$

Their method is readily extended to the convective core with radiation pressure.
Using

$$
\rho / \rho_{\mathrm{c}}=\left(y / y_{\mathrm{c}}\right) \exp \left\{8\left(y-y_{\mathrm{c}}\right)\right\}
$$

and formula (4), there follows

$$
\begin{aligned}
\epsilon \rho & =\epsilon_{0} \rho^{k+1} T^{s} \\
& =\epsilon_{0} \rho_{\mathrm{c}}^{k+1} T_{\mathrm{c}}^{s}\left(y / y_{\mathrm{c}}\right)^{k+1+2 s / 3} \exp \left\{8\left(y-y_{\mathrm{c}}\right)\left(k+1+\frac{1}{3} s\right)\right\}
\end{aligned}
$$

The integrand of (5) can now be expanded in a series of even powers of ξ. The second term, the term in ξ^{4}, is next incorporated in an exponential which is factored out from the series. This finally leads to

$$
\begin{aligned}
\int_{0}^{\infty} 4 \pi r^{2} \rho \epsilon \mathrm{~d} r & =4 \pi \epsilon_{\mathrm{c}} \rho_{\mathrm{c}}\left(\frac{3 \mathscr{R}^{2} y_{\mathrm{c}}}{4 \pi a G \mu^{2} T_{\mathrm{c}}^{2}}\right)^{3 / 2} \int_{0}^{\infty}\left\{\exp \left(-\lambda \xi^{2}\right)\right\}\left(1+a_{4} \xi^{4}+a_{6} \xi^{6}+\ldots\right) \xi^{2} \mathrm{~d} \xi \\
& =C \lambda^{-3 / 2}\left(1+\frac{15}{4} a_{4} \lambda^{-2}+\frac{105}{8} a_{6} \lambda^{-3}+\ldots\right)
\end{aligned}
$$

where

$$
\begin{gathered}
C=\epsilon_{\mathrm{c}}\left(3 \mathscr{R}^{4} y_{\mathrm{c}} / 256 a G^{3} \mu^{4}\right)^{\frac{1}{2}}, \\
\lambda= \\
\left(5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}\right)^{3} a_{4}=\left(k+1+\frac{2}{3} s+8 y_{\mathrm{c}}\left(k+1+\frac{1}{3} s\right)\right\}\left(5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}\right)^{-1}, \\
\\
+s\left(-\frac{1}{24}+\frac{2}{3} y_{\mathrm{c}}+\frac{52}{5} y_{\mathrm{c}}^{2}+\frac{896}{15} y_{\mathrm{c}}^{3}+\frac{1024}{15} y_{\mathrm{c}}^{4}\right) \\
\left(5+40 y_{\mathrm{c}}+32 y_{\mathrm{c}}^{2}\right)^{5} a_{6}=(k+1)\left(-\frac{5}{15} y_{\mathrm{c}}^{2}+\frac{1024}{45} y_{\mathrm{c}}^{3}+\frac{1024}{45} y_{\mathrm{c}}^{4}\right), \\
\\
\left.\quad-\frac{1055}{97416} y_{\mathrm{c}}-\frac{1888}{63} y_{\mathrm{c}}^{2}-\frac{49072}{189} y_{\mathrm{c}}^{3}-\frac{908288}{315} y_{\mathrm{c}}^{5}-\frac{671744}{189} y_{\mathrm{c}}^{6}-\frac{1703936}{945} y_{\mathrm{c}}^{7}\right) \\
\\
+s\left(-\frac{5}{162}-\frac{295}{567} y_{\mathrm{c}}-\frac{5576}{189} y_{\mathrm{c}}^{2}-\frac{8864}{81} y_{\mathrm{c}}^{3}-\frac{1142272}{2835} y_{\mathrm{c}}^{4}\right. \\
\\
\left.\quad-\frac{142336}{135} y_{\mathrm{c}}^{5}-\frac{357172}{2835} y_{\mathrm{c}}^{6}-\frac{1703936}{2835} y_{\mathrm{c}}^{7}\right)
\end{gathered}
$$

V. References

Hayakawa, S., Hayashi, C., Imoto, M., and Kikuchi, K. (1956).—Progr. theor. Phys., Osaka 16, 507.
Hayashi, C., and Cameron, R. C. (1962).-Astrophys. J. 136, 166.
Hayasir, C., Hoshi, R., and Sugrmoto, D. (1962).-Progr. theor. Phys., Osaka, Suppl. No. 22.
Henrich, L. R. (1941).-Astrophys. J. 93, 483.
SEe, T. J. J. (1905).-Astr. Nachr. 169, 322.
Shanks, D. (1955).-J. Math. Phys. 34, 1.
Van der Borght, R., and Meggitt, S. (1963).-Aust. J. Phys. 16, 415.

[^0]: * Department of Applied Mathematics, School of General Studies, Australian National University, Canberra.

