THE TAYLOR SERIES FOR THE CONVECTIVE CORE IN A STELLAR MODEL

By S. M. A. MEGGITT*

[Manuscript received May 5, 1966]

Summary

The first seven terms of the Taylor expansion about the centre for the solutions of a convective core with radiation pressure have been calculated. This truncated series can be used to calculate the values of quantities in the core for cores up to 40% of the radius and for radiation pressure up to $1-\beta_c = 0.2$.

I. INTRODUCTION

One method that has often been used for the construction of stellar models is to start numerical integrations simultaneously inwards from the surface and outwards from the centre of the star. The parameters (such as luminosity and radius) are then adjusted until the two integrations fit together at a suitable point, often the boundary between core and envelope.

In the case of a convective core (such as in a massive star), it has been shown (Henrich 1941) that the outward integrations can be made to depend on a single parameter, for instance y_c , the ratio of the radiation pressure to the gas pressure at the centre. It is then possible (e.g. Hayashi and Cameron 1962) to construct a table of integrations using a set of values of y_c and, whenever a convective core is required, to interpolate in this mesh of solutions.

Alternatively, See (1905) had considered the particular case of a convective model with no radiation pressure (a polytrope of index 1.5). He showed that the interior values could be obtained by taking sufficient terms in the Taylor expansion about the centre, thus eliminating the need for numerical integration in this case.

The present paper gives terms of the Taylor series, expanded about the centre, for a convective core in which radiation pressure is included. The series for the mass extends up to the fifteenth power and the series for y/y_c up to the twelfth power. These terms are sufficient to give values of variables in the core for stars of reasonable mass, even though the rate of convergence of the series decreases as radiation pressure gains in importance. Small cores can thus be fitted without numerical integration, apart from a quadrature for evaluation of the luminosity.

* Department of Applied Mathematics, School of General Studies, Australian National University, Canberra.

S. M. A. MEGGITT

II. EQUATIONS

The differential equations for a convective core with radiation pressure included are well known to be (Hayashi, Hoshi, and Sugimoto 1962)

$$\frac{\mathrm{d}M_r}{\mathrm{d}r} = 4\pi r^2 \rho ,$$

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM_r \rho}{r^2} ,$$

$$\frac{\mathrm{d}(\ln T)}{\mathrm{d}(\ln P)} = \frac{8 - 6\beta}{32 - 24\beta - 3\beta^2} ,$$

$$(1 - \beta)P = \frac{1}{3}aT^4 , \qquad \beta P = \mathscr{R}\rho T/\mu . \qquad (1)$$

with

The composition is homogeneous due to the convective mixing, so that μ is constant. At the centre r = 0, $M_r = 0$. Introducing as a variable $y = (1-\beta)/\beta$, the ratio of the radiation pressure to the gas pressure, one of the differential equations can be eliminated, leading to

$$\begin{split} \frac{\mathrm{d}M_r}{\mathrm{d}r} &= \left(\frac{4\pi a\mu T_\mathrm{c}^3}{3\mathscr{R}y_\mathrm{c}^2}\right) r^2 y \exp\{8(y-y_\mathrm{c})\}\,,\\ \frac{\mathrm{d}y}{\mathrm{d}r} &= -\left(\frac{3G\mu y_\mathrm{c}}{\mathscr{R}T_\mathrm{c}}\right) \left(\frac{M_r}{r^2}\right) \left(\frac{(y/y_\mathrm{c})^4}{5+40y+32y^2}\right) \exp\{-8(y-y_\mathrm{c})/3\}\,. \end{split}$$

Finally, using the transformation

$$egin{aligned} \xi &= r \Big(rac{4\pi a G \mu^2 T_\mathrm{c}^2}{3 \mathscr{R}^2 y_\mathrm{c}} \Big)^{rac{1}{2}} \doteq rac{\mu r T_\mathrm{c}/R_\odot}{2\cdot 6 imes 10^7 y_\mathrm{c}^{rak{1}{2}}}, \ \zeta &= M_r \Big(rac{4\pi a G^3 \mu^4}{3 \mathscr{R}^4 y_\mathrm{c}} \Big)^{rak{1}{2}} \doteq rac{\mu^2 M_r/M_\odot}{1\cdot 135 y_\mathrm{c}^{rak{1}{2}}}, \end{aligned}$$

to remove the dimensioned quantities, the equations become

$$\frac{\mathrm{d}\zeta}{\mathrm{d}\xi} = \left(\frac{y}{y_{\mathrm{c}}}\right)\xi^{2}\exp\{8(y-y_{\mathrm{c}})\},\qquad(2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} = -\left(\frac{3(y/y_{\mathrm{c}})^{*}}{5+40y+32y^{2}}\right)\left(\frac{y_{\mathrm{c}}\,\zeta}{\xi^{2}}\right)\exp\{-8(y-y_{\mathrm{c}})/3\},\tag{3}$$

with the boundary conditions $y = y_c$, $\zeta = 0$ at the centre $\xi = 0$. The solutions depend on a single parameter y_c .

The first seven terms of the power series for y/y_c and ζ were obtained on a CDC 3600 computer, a program being specifically written in Fortran for the purpose. The method used was the following iterative one: given the expansion for y/y_c as far as the power ξ^n , this polynomial was substituted in the right-hand side of

p	m	a_k	b _k	k
3	0	1	3	0
5	1	-1	10	0
U	1	-1	5	1
_				
7	3	1	12	0
		47 96	21	1
		6656	105	3
		4864	105	4
Q	5	25	100	0
0	5	-25	480	0
		-26164	567	2
		-721408	1701	3
		-17801344	8505	4
		- 15337472	2835	5
		- 20283392	8505 8505	6 7
		10100002	0303	'
11	7	95	3564	0
		36515	16632	1
		372278	6237	2
		520808 971 81 7948	567 91195	3
		1635031424	31185	4 5
		890764288	4455	6
		1328226304	2835	7
		96979877888	155925	8
		22025076736	51975	9
		17948475392	155925	10
13	9	-13595	1111968	0
		-250325	162162	1
		-27391733	486486	2
			81081	3
		- 10012093952	173745	4
		-2353079962624	2027025	6
		-1590252163072	289575	7
		-36620267831296	2027025	8
		-1400966742016	34749	9
		- 592265608167424	10135125	10
		- 86351676440576	30403375	11
		-162174341218304	30405375	12
				_0
15	11	103105	20015424	0
		22610195	23351328	1
		18028001 20821163516	428652 15324300	2 2
		1931663470768	76621545	ъ 4
		26128164559136	76621545	5
		254364989556992	76621545	6
		838885745437696	34827975	7
		83391815485751296	638512875	8
		1010239672836161536	1910038620 638519975	9 10
		52596172527763456	15324309	11
		50310836976544120832	9577693125	12
		52351506534442729472	9577693125	13
		35017599219008536576	9577693125	14
		13542207561335308288	9577693125	15
		209211988746698752	870699375	16

 $\begin{array}{c} {\bf Table \ l} \\ {\bf COEFFICIENTS \ IN \ THE \ SERIES \ FOR \ \zeta} \end{array}$

p	m	a_k	b_k	k
0	0	1	1	0
2	1	-1	2	0
4	3	7 1 32 128	12 1 5 15	0 1 2 3
6	5	-25 25 -1504 -24064 -11392 -131072 -212992	54 7 63 189 35 315 945	0 1 2 3 4 5 6
8	7	$\begin{array}{r} 95 \\46835 \\ 56593 \\ 141668 \\ 2944448 \\ 2038144 \\ 40073216 \\ 316669952 \\ 258998272 \\ 92274688 \end{array}$	324 4536 567 2835 405 2835 14175 14175 14175 14175	0 1 2 3 4 5 6 7 8 9
10	9	$\begin{array}{r} -13595\\ 1088015\\ -11405893\\ 14985064\\ -288128\\ -88542208\\ -5181129728\\ -5258508032\\ -24998674432\\ -54644965376\\ -3069068705792\\ -1785632653312\\ -470567354368\end{array}$	85536 74844 37422 18711 4455 4455 51975 165925 31185 42525 2338875 2338875 2338875	0 1 2 3 4 5 6 7 8 9 10 11 12
12	11	$\begin{array}{c} 515525\\ -8806625\\ 480907165\\ -10402287095\\ 21032110496\\ 460548009536\\ 1350492898816\\ 3575168003072\\ 240595609133056\\ 218243374514176\\ 13446443696128\\ 9782380394971136\\ 191917660831744\\ 14533188602284032\\ 3949720644878336\\ 4138613964623872\\ \end{array}$	$\begin{array}{c} 6671808\\ 598752\\ 785862\\ 1702701\\ 1702701\\ 5108103\\ 2837835\\ 42567525\\ 11609325\\ 297675\\ 127702575\\ 2149875\\ 212837625\\ 127702575\\ 638512875\end{array}$	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TABLE 2 COEFFICIENTS IN THE SERIES FOR $y/y_{
m c}$

(2) and the expression expanded in powers of ξ ; one integration gave a polynomial for ζ ; substitution in (3) and a second integration gave the expansion for y/y_c up to the term in ξ^{n+2} . The alternative method of substituting a series with undetermined coefficients, and then solving successively for these coefficients, was not used because of the prohibitive amount of storage that would have been required. The series for T/T_c was obtained from the series for y/y_c by substitution in Henrich's expression

$$T/T_{\rm c} = (y/y_{\rm c})^{\frac{3}{2}} \exp\{8(y-y_{\rm c})/3\}$$
(4)

followed again by expansion in powers. Rational arithmetic was used throughout. The rational numbers were kept in their reduced form by using the Euclidean algorithm to calculate the greatest common divisor of numerator and denominator.

A partial check on the results was obtained by comparing the series for T/T_c in the limiting cases $y_c \to 0$ and $y_c \to \infty$ with the series for the Emden function. Letting y_c approach zero and replacing $2\xi^2/5$ by ξ^2 leads to the Emden function with index n = 1.5, while replacing $\xi^2/4y_c$ by ξ^2 and letting y_c approach infinity leads to the Emden function with index 3. The Emden series for general n, up to the term in ξ^{20} , was derived separately on the computer. It was also found to agree in the case n = 1.5 with the series given by See.

III. NUMERICAL VALUES

Table 1 gives the exact rational coefficients of the series for ζ (the mass variable) in the form

$$\zeta = rac{1}{3}\xi^3 - igg(rac{rac{1}{10} + rac{4}{5}y_{ ext{c}}}{5 + 40y_{ ext{c}} + 32y_{ ext{c}}^2}igg)\xi^5 + \ldots + igg(rac{\sum a_k\,y_{ ext{c}}^k/b_k}{(5 + 40y_{ ext{c}} + 32y_{ ext{c}}^2)^m}igg)\xi^p + \ldots$$

In a similar manner, Table 2 gives coefficients in the series

$$\frac{y}{y_{\rm c}} = 1 - \left(\frac{\frac{1}{2}}{5 + 40y_{\rm c} + 32y_{\rm c}^2}\right) \xi^2 + \left(\frac{\frac{7}{12} + y_{\rm c} + \frac{32}{5}y_{\rm c}^2 + \frac{128}{15}y_{\rm c}^3}{(5 + 40y_{\rm c} + 32y_{\rm c}^2)^3}\right) \xi^4 + \dots,$$

and Table 3 gives coefficients in the series for T/T_c . Given two central values, such as T_c and β_c , and a point r in the core, the series then give directly y/y_c and M_r . Once y is known, T is in fact most easily obtained from (4), and P and ρ from (1).

The rates of convergence of the series in Tables 1, 2, and 3 decrease both as the distance from the centre of the star increases and as the radiation pressure increases. However, due to the regular behaviour of the terms, convergence can be substantially accelerated by using the e_1 method described by Shanks (1955), which consists of applying the transformation

$$S_n^* = \frac{S_{n+1}^2 - S_{n+2}S_n}{2S_{n+1} - S_{n+2} - S_n}$$

to the sequence $\{S_n\}$ of partial sums. As an example, Table 4 compares the values of y and ζ , obtained from the series, with the values obtained by direct numerical integration of the differential equations (2) and (3). In each comparison, the first line gives the true value from the numerical integration, the second line gives the

p	m	a_k	b _k	k
0	0	1	1	0
2	1	-1	3	0
-	-	-4	3	1
	0	1	A	0
4	ð	10	* 3	1
		424	15	2
		1088	15	3
		256	5	4
e	5	-5	36	0
Ū		- 460	189	1
		-11624	189	2
		12064	27	3
		-1932032	945	4
		-128000	27	5
		- 4726784	945	6
		-622592	315	7
8	7	125	1944	0
0	•	5165	6804	1
		47464	567	2
		438152	567	3
		20995456	2835	4
		116415232	2835	5
		693517312	4725	6
		4591812608	14175	7
		5835882496	14175	8
		11718098944	42020	9
		049008044	8909	10
10	9	- 95	3564	0
		43135	149688	1
		-214919	2079	2
		-10360388	18711	3
		- 437654144	31185	4
		-743760128	0237 51075	e e
		- 39200081152	17995	7
			31185	8
			51975	9
		-10697471688704	334125	10
		- 4359484080128	155925	11
		- 32193699119104	2338875	12
		-2297404850176	779625	13
19	11	67975	6671808	0
12		- 453800	729729	1
		26789965	224532	2
		-981043270	1702701	3
		870515488	35721	4
		1018947275968	5108103	5
		48468218177536	25540515	6
		48451536705536	3648645	7
		587249080582144	8013000 107700575	8
		34324846021378048	12//020/0	9 10
		49000/0/0422913024 10/0782/01019119208	638512875	11
		1042700401212112090 4048707099098408	2027025	12
		4940707500089810 <i>1</i> 4568707500089810 <i>1</i>	18243225	13
		1064163139886514176	638512875	14
		415458029845086208	638512875	15
		10379157837971456	91216125	16

Table 3 coefficients in the series for $T/T\,{\rm c}$

sum of the first seven terms of the Taylor series, and the third and fourth lines give the result of applying the e_1 transform once and twice respectively to the series. The distance from the centre ξ was chosen to correspond approximately with the core boundary of the massive homogeneous stellar model with the same value of β_c (Van der Borght and Meggitt 1963). The table also quotes the values of r/R at the core boundary and $\mu^2 M/M_{\odot}$ for these models. Direct comparison with the tables of Henrich gave results of a similar order of accuracy.

y_{c}	1	2 3
ξ	$3 \cdot 94$	6.07
True value Sum of seven terms	0.15011	0 • 43896
$y \left\{ \text{ of series} \right\}$	0.15012	0.44008
e_1 method	0.12011	$0 \cdot 43901$
e_1^2 method	0.12011	$0 \cdot 43901$
True value	9.7985	$22 \cdot 343$
Sum of seven terms		
$\zeta \left\{ \begin{array}{c} \text{of series} \end{array} \right\}$	$9 \cdot 8612$	$43 \cdot 817$
e ₁ method	9.7974	$22 \cdot 119$
$\left(e_{1}^{2} \text{ method} \right)$	9.7985	$22 \cdot 340$
$m eta_{\mathbf{c}}$	0.8	0.6
$\mu^2 M/{M}_{\odot}$	9.8	26.0
r/R	0.3885	0.4965

TABLE 4
COMPARISON BETWEEN TRUE VALUES OF y and ζ at point ξ
AND VALUES OBTAINED FROM THE SERIES

IV. TOTAL LUMINOSITY

The total energy produced in the star is obtained from the quadrature

$$L = \int_0^R 4\pi r^2 \rho \epsilon \, \mathrm{d}r \,. \tag{5}$$

In the particular case in which ϵ can be approximated by $\epsilon_0 \rho^k T^s$ and the model is a polytrope of index *n*, this integral has been evaluated by Hayakawa *et al.* (1956) in the form of the rapidly convergent series

$$L = \epsilon_0 \rho_{\rm c}^{k+1} T_{\rm c}^{s} \left(\frac{3n+3}{n(1+k)+s} \cdot \frac{\mathscr{R}T_{\rm c}}{2G\mu\rho_{\rm c}} \right)^{3/2} \left\{ 1 + \frac{15}{8} \left(\frac{3n}{5} - 1 \right) \left(\frac{1}{n(1+k)+s} \right) + \ldots \right\}.$$

Their method is readily extended to the convective core with radiation pressure.

Using

ng
$$ho/
ho_{
m c} = (y/y_{
m c})\exp\{8(y-y_{
m c})\}$$

and formula (4), there follows

$$egin{aligned} \epsilon
ho &= \epsilon_0 \, {
ho}^{k+1} T^s \ &= \epsilon_0 \, {
ho}^{k+1}_{
m c} T^s_{
m c} \left(y/y_{
m c}
ight)^{k+1+2s/3} \exp\{8(y\!-\!y_{
m c})(k\!+\!1\!+\!rac{1}{3}s)\}\,. \end{aligned}$$

The integrand of (5) can now be expanded in a series of even powers of ξ . The second term, the term in ξ^4 , is next incorporated in an exponential which is factored out from the series. This finally leads to

$$\begin{split} \int_{0}^{\infty} 4\pi r^{2} \rho \epsilon \, \mathrm{d}r &= 4\pi \epsilon_{0} \, \rho_{0} \bigg(\frac{3\mathscr{R}^{2} y_{0}}{4\pi a G \mu^{2} T_{0}^{2}} \bigg)^{3/2} \int_{0}^{\infty} \{ \exp(-\lambda \xi^{2}) \} (1 + a_{4} \, \xi^{4} + a_{6} \, \xi^{6} + \ldots) \xi^{2} \, \mathrm{d}\xi \\ &= C \lambda^{-3/2} \big(1 + \frac{15}{4} a_{4} \, \lambda^{-2} + \frac{105}{8} a_{6} \, \lambda^{-3} + \ldots \big) \,, \end{split}$$

where

$$C = \epsilon_{
m c} (3\mathscr{R}^4 y_{
m c}/256 \, a G^3 \mu^4)^{rac{1}{2}},$$

 $\lambda = rac{1}{2} \{k + 1 + rac{2}{3}s + 8y_{
m c}(k + 1 + rac{1}{3}s)\}(5 + 40y_{
m c} + 32y_{
m c}^2)^{-1},$
 $(5 + 40y_{
m c} + 32y_{
m c}^2)^3 a_4 = (k + 1) \left(-rac{1}{24} + rac{2}{3}y_{
m c} + rac{52}{5}y_{
m c}^2 + rac{896}{15}y_{
m c}^3 + rac{1024}{15}y_{
m c}^4
ight)$
 $+ s \left(-rac{1}{36} - rac{10}{9}y_{
m c} + rac{64}{15}y_{
m c}^2 + rac{1024}{45}y_{
m c}^3 + rac{1024}{45}y_{
m c}^4
ight),$

.

$$(5+40y_{\rm c}+32y_{\rm c}^2)^5 a_6 = (k+1) \Big(-\frac{5}{108} -\frac{995}{378} y_{\rm c} -\frac{1888}{63} y_{\rm c}^2 -\frac{49072}{189} y_{\rm c}^3 \\ -\frac{1052416}{945} y_{\rm c}^4 -\frac{908288}{315} y_{\rm c}^5 -\frac{671744}{189} y_{\rm c}^6 -\frac{1703936}{945} y_{\rm c}^7 \Big) \\ +s \Big(-\frac{5}{162} -\frac{295}{567} y_{\rm c} -\frac{5576}{189} y_{\rm c}^2 -\frac{8864}{81} y_{\rm c}^3 -\frac{1142272}{2835} y_{\rm c}^4 \\ -\frac{142336}{135} y_{\rm c}^5 -\frac{3571712}{2835} y_{\rm c}^6 -\frac{1703936}{2835} y_{\rm c}^7 \Big).$$

V. References

HAYAKAWA, S., HAYASHI, C., IMOTO, M., and KIKUCHI, K. (1956).—Progr. theor. Phys., Osaka 16, 507.

HAYASHI, C., and CAMERON, R. C. (1962).—Astrophys. J. 136, 166.

HAYASHI, C., HOSHI, R., and SUGIMOTO, D. (1962).—Progr. theor. Phys., Osaka, Suppl. No. 22.

HENRICH, L. R. (1941).—Astrophys. J. 93, 483.

SEE, T. J. J. (1905).—Astr. Nachr. 169, 322.

SHANKS, D. (1955).—J. Math. Phys. 34, 1.

VAN DER BORGHT, R., and MEGGITT, S. (1963).—Aust. J. Phys. 16, 415.