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SU'/11I1'I'6ar'g 

Following an alternative phase-amplitude derivation of the general forms 
of r and 8, obtained earlier by Seymour, Leipnik, and Nicholson (SLN) for the 
motion of a charged particle in the time-dependent magnetic field within a long 
solenoid, the guiding-centre form of the SLN result for r is obtained in the adiabatic 
limit and is used as a guide to analysis of the charged particle motion when the 
solenoid magnetic field is quasi-static. This leads to identification of the associated 
adiabatic invariants, and the analysis then closes with a quantitative examination 
of the adiabatic approximation, which sheds interesting light on the required 
conditions for its self-consistency. 

I. INTRODUOTION 

In a previous paper (Seymour, Leipnik, and Nicholson 1965; hereafter referred 
to as SLN) the most general form of the solution for the motion of a charged particle 
in the time-dependent axially symmetric magnetic field within a long solenoid 
was obtained, together with a simple pictorial interpretation, and, for convenience 
of reference in the present paper, the salient features of the solution are assembled 
here. Essentia.lly, for a charged particle of mass m, charge q, and velocity v, located 
within the solenoid at r, fJ, z, the component equations of the non-relativistic Lorentz 
force equation of motion 

mv = q(E+vxB) (e.m.u.) (1.1) 

were specialized for the solenoid fields 

E = (0, -;-!r B", 0) (1.2) 
and 

B = (O,O,B,,) , (1.3) 

and were manipulated to obtain the results that: 

(1) the z-direction motion of the charged particle is of constant velocity, and 

(2) the non-trivial motion of the charged particle in any r-fJ plane is represented 
by the equations 

(1.4) 
and 

ft ft dt' 
fJ = WL dt' +0 2" +fJo' o 0 r 

(1.5) 
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where the time-dependent quantity 

rudt) = -q B,,(t)/2m (1.6) 

is the Larmor angular frequency and a is a real constant. 

Further transformations showed that solutions for rand 8 can be obtained 
from equations (1.4) and (1. 5) in terms of a complex time-dependent quantity 
u(t) = a(t)+i,8(t), satisfying the equation 

(1.7) 
in the forms 

r S = uu* (1. 8) 
and 

(1. 9) 

In terms of assumed real, linearly independent solutions I 1(t) and Is(t) of 
equation (1.7), rand 8 were finally obtained in the forms 

(1.10) 
and 

(1.11) 

where, in terms of arbitrary real constants ali' 11- and" are complex constants given 
by 11- = aU +iaSI = 111-1 expiEI and" = a1s+iass = 1"1 expiEs, and 

(1.12) 

The pictorial interpretation of the general solutions for rand 8 in terms of 
11 and Is given by equations (1.10) and (1.11) is described in SLN at the close of 
Section III. Specializations of these equations for cases corresponding to the 
solenoid magnetic field, and therefore rudt) , varying in accordance with a simple 
power law and an exponential time dependence are given in SLN, Section IV. 

In the present paper attention is focused on the case of quasi-stationary 
variation of the solenoid's magnetic field B", with a view to identifying the associated 
approximate integrals of the equation of motion-the adiabatic invariants. 

As a preliminary step, it is a simple matter to develop an interesting alternative 
derivation of the results (1.10) and (1.11), more in the spirit of the phase-amplitude 
approach to the solution of the quasi-static case, but which is motivated by under
standing gained from the solution technique presented in SLN. 

II. ALTERNATIVE DERIVATION OF THE GENERAL SOLUTIONS FOR rAND 8 

Noting that the induced azimuthal electric field given by equation (1.2) can 
be written in the vector form 

E =irxB, (2.1) 

where B is given by (1. 3), it follows that the Lorentz force equation (1.1) yields, 
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for charged particle motion transverse to the magnetic field, the vector equation 

(2.2) 
where 

COg(t) = -q B(t)jm = 2COL (2.3) 

(from equation (1.6» is the charged particle gyrofrequency mentioned in SLN, 
Section V. 

Consideration of the constant velocity motion in the z direction is omitted 
at this stage, as it can be combined with the r, 8 solutions later to give the complete 
three-dimensional charged particle trajectory. Then, in Cartesian coordinates, the 
component equations of (2.2) are 

.. 1 . • x = -1!WgY -wgy (2.4) 
and 

fi = iwgx+wgx, (2.5) 
where 

COg = kWg (2.6) 

and k is the usual unit vector in the positive z direction. 

Using a standard technique of analytical mechanics, we introduce the complex 
variable R = x+iy and recombine equations (2.4) and (2.5) to obtain the following 
equation in R 

R = i(iwgR+wgR). (2.7) 

By taking R to have the phase-amplitude form 

(2.8) 

where e(t) is a complex amplitude and w(t) is, at this stage, an arbitrary time· 
dependent real angular frequency, we obtain by substitution in equation (2.7) 

(2.9) 

after cancellation of the non-zero factor exp(i J W dt). 

Bearing in mind the relationship (2.3) and the result (1. 7) (equation (3.12) 
in SLN). we see that equation (2.9) assumes the simple form 

(2.10) 

if a transformation to a coordinate system moving with angular velocity WL is made 
by choosing 

Writing 

equation (2.8) can be written in the form 

R = lei exp i(J~ WL dt' +!ft(t)+8o), 

where the angle 80 is a constant. 

(2.11) 

(2.12) 

(2.13) 
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Remembering that the time-dependent real and imaginary parts of g must 
satisfy equation (2.10), the Argand diagram interpretation of equation (2.13) is 
simply that the position of the charged particle in a plane normal to the z axis of the 
solenoid is referred, in terms of the real and imaginary parts of g, to axes moving 
with an angular velocity WL about an origin of coordinates located on the z axis. 
Since the cylindrical coordinates rand 8 are, in terms of the Cartesian form 

R =x+iy, 
given by 

r=jRj, 8 = tan-1(yfx), (2.14) 

equation (2.13) yields the angular equation 

8 = f: WL dt' +if;(t) +80• (2.15) 

Comparison of this result with equation (1.9) shows that, in terms of the SLN 
nomenclature, 

if;(t) = -tan-1(f3fa). (2.16) 

From equations (2.13) and (2.14) it is immediately evident that 

r = jRj = jgj, (2.17) 

and hence, using (2.16), equation (2.12) can be written 

g = r exp{ -i tan-1(f3fa)}. (2.18) 

Reverting to SLN, combinati.on of their results (3.17) and (3.19), which were 
respectively 

and 

gives 

( It dt') u* = rexp iC 0-;:2 

It dt' 
-tan-1(f3fa) = C 2' 

o r 

u* = rexp{ -i tan-1(f3fa)}, 

so that from (2.18) and (2.19) 

g = u* = a(t)-if3(t). 

(2.19) 

(2.20) 

Summarizing results for this exact phase-amplitude method of solution, we have 

r2 = RR* = gg*, (2.21) 
and 

(2.22) 

where, in terms of the SLN nomenclature, 

g = u* = a(t)-if3(t), and if; = -tan-1(f3fa). 
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Exactly as in SLN, Section III, we express a and fJ as linoor superpositions 
of assumed independent, real solutions I 1(t) and 12(t), satisfying equation (2.10), 
to obtain the general results (1.10) and (1.11) for arbitrary time dependence of 
wdt), and thus of the solenoid magnetic field Bz(t). 

III. GUIDING-CENTRE FORM OF THE SLN RESULT FOR r 

The result (1.10) for r is not in guiding-centre form, which is the important 
form for charged particle motion in magnetic fields that change adiabatically in 
space and time. Since the adiabatic invariants become exact integrals of the motion 
in the limit of infinitely slow variation of the magnetic field in space and time, 
examination of the conversion of the SLN result (1.10) for r to guiding-centre form 
for the case of constant solenoid magnetic field forms an interesting tractable 
preliminary to discussion of the temporal adiabatic case of interest here. 

We consider two-dimensional motion in a plane normal to the z axis of the 
solenoid, and assume that p is the orbit radius vector rotating with angular velocity 
Wg = 2WL about a fixed point, specified by the tip of the guiding-centre position 
vector g, so that 

(3.1) 
Then 

(3.2) 

where ao is the constant angle between the magnitude g and the x axis, where we 
take t = O. 

In the constant magnetic field case, with WL independent of time, I 1(t) and 
12(t) are linearly independent, rool solutions of equation (1.7); I 1(t) = coswLt 
and 12(t) = sinwLt, say. Then from equation (1.10) 

By expansion of the cosine term in (3.2), and equation of coefficients of cos 2WL t, 
sin2wLt, and time-independent terms with those in (3.3), we obtain 

and 

p2+g2 = !(11L12+1>'12), 

2pgcos ao = !(11L12_1>'12), 

From the last two equations we readily obtain 

and 

where evidently K > O. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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When t = aof2wL' equation (3.2) yields 

p+g = +(!(IJ~12+IAI2)+KP, (3.9) 

using the results (3.4) and (3.8); and similarly, when t = (ao+lT)f2wL' we have 

(3.lO) 

From equations (3.9) and (3.lO) we obtain explicit forms for p and g in terms of 
SLN quantities, namely, 

and 
p = U +{t(1~12+IAI2)+K}!=f{!(1~12+IAI2)-K}i] 

g = U +{t(/~12+IAI2)+KP±{t(1~12+IAI2)-K}!]. 
Further, use of equations (3.4) and (3.8) in equation (3.2) gives 

r2 = t(I~12+IAI2)+K cos(2wLt-ao). 

(3.11) 

(3.12) 

(3.13) 

To gain familiarity with these results and an understanding of the physical 
meaning of the real constant C appearing in equation (1.4), we now briefly examine 
two special cases of charged particle motion in a constant magnetic field. 

Case 1. Motion about the Solenoid Axis 

As shown by Seymour (1963), the integration constant in equation (1.4) has 
to be adjusted to C = -qBz r 2f2m = WLr2 for circular charged particle motion 
concentric with the solenoid axis. From the SLN equation (3.27), 

C = I~IIAI sin(E"I-E"2) W(h 12), 

where W(Iv 12) is the Wronskian determinant I~: tl· 
Since here II = coswLt, 12 = sinwLt, W(I1,!2) = WL' and (3.14) yields 

(3.14) 

p2 = I~IIAI sin(E"I-E"2), (3.15) 

because in this case r = p and g = O. Further, substitution of g = 0 in equations 
(3.4) and (3.5), and combination of the results gives 

(3.16) 

Hence equation (3.15) reduces to sin( E"1 -E"2) = 1, so that 

(3.17) 

a result that is confirmed by putting g = 0 into equation (3.6). 

Thus the vectors of lengths 1~IIl and IAII2' with constant angle E"1-E"2 between 
them, moving about the origin of coordinates at the angular velocity wdt), as 
described in SLN at the end of Section III, are in this case 

1~IIl = pcoswLt, ) 

IAII2 = psinwLt, 

E"1-E"2 = t7T between them. 

(3.18) 

with angle 
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Substitution of these results in equation (1.10) simply confirms that r = p, 
while their use in equation (l.11) gives the form 

(j = J:wL dt' -("l-w L t )+(jO' 

which, in view of the constancy of WL here, reduces to 

(j = Wgt-"l +(jo, (3.19) 

where we have used equation (2.3) to eliminate WL. Assuming for convenience the 
usua.l condition that (j = 0 at t = 0, we see from (3.19) that (jo = "1' so that in this 
case 

(3.20) 

The manner in which the SLN solution represents the circular charged particle 
motion about the solenoid axis in this ca.se now becomes clear. First we consider 
a plane normal to the z axis of the solenoid, in which a complex radius vector of 
length p rotates with constant angular velocity WL about a point corresponding 
to intersection of the z axis and the plane. Then Ilkll1 = p cos wLt and IAII2 = psinwLt 

a.s given by (3.18) are merely the real and imaginary components respectively of 
the complex radius, resolved onto appropriate fixed mutually perpendicular axes. 
However, this representation would give (j = wLt, rather than the (j = 2WLt required 
by equation (3.20), and so to complete the picture we now have to spin the plane 
in which the above motion is taking place, at an angular velocity of WL' so that the 
mutually perpendicular components p cos WL t and p sin WL t of the radius vector are 
referred to axes spinning with angular velocity WL. The representation is now 
complete. Although the charged particle motion in this case is most simple, the 
above discussion gives considerable insight into the na.ture of the SLN solution. 

Oase 2. Grazing Orbits 

This case corresponds to the condition p = g, so that the circular motion does 
not include the solenoid axis but in fact just grazes it. From SLN, equation (2.23), 
we obtain by multiplying through by r 

(3.21) 

so that, as pointed out by Seymour (1963, p. 441), for V8 to remain finite at r = 0, 
we must impose the condition 

0=0. (3.22) 

However, equation (3.21) of SLN states that 

W(a,fi) = I: ~I = -0, (3.23) 

and hence, using the condition 0 = 0 given by equation (3.22) above, the Wronskian 
of a and fi vanishes. The real and imaginary parts of the SLN quantity u = a+ifi 
(c.f. equation (2.20), Section II, present paper) are now no longer linearly inde
pendent, contrary to the assumption in SLN. Application of the SLN results to 
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this case of grazing orbits leads to inconsistencies, as would now be expected, but 
this is of no concern, for from equations (1.4) and (l.5) we merely have to solve 

(3.24) 
and 

(3.25) 

for constant WL and initial conditions appropriate to the particular grazing orbit 
geometry being considered (Seymour 1963, pp. 441-2, covers a typical case). 

IV. ANALYSIS OF THE MOTION WHEN THE SOLENOID MAGNETIC FIELD IS 

QUASI-STATIC 

A guiding-centre review and a trajectory approximation published earlier 
(Seymour 1963, pp. 436-7, 442-3) gave, in the former case, the well-known result 

(4.1) 

in the nomenclature of the present paper, and in the latter case the different result 

r2B z = constant. (4.2) 

In this section we analyse the adiabatic motion of a charged particle in a 
quasi-static field Bz(t) and from the solution obtained reconcile the results (4.1) 
and (4.2), which, upon multiplication through by 7T in each case, are clearly of a 
flux-conserving nature. 

Recalling that in Section III, Case 1, where Bz(t) was time independent, 
11 = coswLt and 12 = sinwLt, we might guess that for a quasi-static BAt) 

11 = cos(f wdt) dt), (4.3) 

and 

(4.4) 

Equation (l. 7) implies that 
(4.5) 

with a similar equation for 12, The formation of, say, 11 from the first of these 
intuitively-based solutions leads to 

11+w£11 = -wLsin(f wLdt), (4.6) 

which merely confirms that, when WL is time independent, 11 = coswLt is the exact 
solution of equation (4.5). With reference to equation (4.4), similar remarks apply 
to 12, To succeed in this case, we profitably assume the phase-amplitude form 

u = A(t) expi.p(t), (4.7) 

in which the time functions A(t) and .p(t) are real quantities, and substitute into 
equation (1.7) to obtain 

(4.8) 
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after cancellation of the non-zero factor exp icf>. Equating the real and imaginary 
parts to zero, we have 

and 
A+wf,A-Acfo2 = 0 

A~+2.Acfo =0. 

Equation (4.10) integrates immediately to yield 

cfol A = constant. 

(4.9) 

(4.10) 

(4.11) 

H we now assume the quantity .A(t) to be a slowly varying function of the time, 
so that A is small compared with the other terms appearing in equation (4.9), we 
have approximately 

cfo= ±WL' (4.12) 
so that 

cf> = ± f wdt) dt. (4.13) 

The above derivation, which is one approach to the J.W.K.B. solution technique 
used in quantum mechanics, enables the quasi-static solution for u to be written 
in the form 

(4.14) 

where we have used equations (4.11), (4.12), and (4.13) in equation (4.7), and 
0 1 = 1011 expiv1 and O2 = 1021 expiv2 are arbitrary complex constants. Then, since 

u· = (O~/wt)exp(-i f WL dt)+(O;/wt)exp(i f WL dt), (4.15) 

we have from equation (1.8) 

r2 = Of+O~ +210111021 COS(2 f wL dt -(VB-VI»). 
WL WL 

(4.16) 

Bearing in mind the result (3.2) for the case of the static magnetic field, 
we can write equation (4.16) in the form 

where 

and 

g2(t) WL = Of, 

p2(t) WL = O~, say, 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

In the adiabatic limit, when the solenoid magnetic field varies infinitely 
slowly with the time, the result (4.17) reduces precisely to equation (3.2), in which 
p, g, and WL are all time-independent quantities. In the quasi-static case, where 
equation (4.17) applies, we note from equations (1. 6), (4.18), and (4.19) that 

and 
g2 Ba = constant, 

p2 Ba = constant. 

(4.21) 

(4.22) 
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Further, by time-averaging equation (4.16) overa few gyroperiods, after multiplying 
through by codt), we obtain 

r2 Ba = constant. (4.23) 

The results (4.21), (4.22), and (4.23) constitute the flux-conserving forms of the 
adiabatic invariants in this case. Equation (4.21) confirms the usual drift-theory 
result given by equation (4.1); in first-order approximation we may use the result 
p = mV.L/qBa (see, for example, Spitzer 1962) to transform equation (4.22) to the 
form 

(4.24) 

where fL is the magnetic moment of the spiralling charged particle, so that equation 
(4.22) confirms the constancy of the transverse or perpendicular adiabatic invariant 
fL in the temporal case; finally, equation (4.23) confirms the result (4.2), obtained 
earlier by Seymour (1963, p. 443) from a non-drift analysis on the assumption that 
r varies as r = roexp(±at), with a ~ COL' In concluding this section, it is of interest 
to note that the results (4.21) and (4.22) have been obtained by Rose and Clark 
(1961), who used a phase-real amplitude form for the quantity R defined with a 
complex amplitude by equation (2.8), Section II, of the present paper, and a 
method of successive approximations. 

V. QUANTITATIVE EXAMINATION OF THE ADIABATIC APPROXIMATION 

In the previous section the assumed form of u did not reveal the explicit forms 
of 11(t) and 12(t) for the adiabatic case, and so we were unable to refine the initially 
chosen, unsuccessful forms given by (4.3) and (4.4). However, remembering that 
0 1 = 1011 expiv1' O2 = 1021 expiv2' by replacing all exponential terms that appear 
in equation (4.14) with their Euler expansions, the form (1.12) is readily obtained, 
where 

fL = (1011 COSvl +10 21 cos v2) +i(1011 sin VI +1021 sinv2)' 

A = (-IOl/sinVl +1021 sinv2)+i(/011 cos VI -/02 / COSV2)' 

11 = coL1cos(J coL dt), 
and 

12 = coLtsin(J coL dt). 
Using, say, equation (5.3), the formation of 11 leads now to 

11+coUl = tcof:2{;(:~r - :t}cos(J coLdt). 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

It is thus evident that the degree to which the solution (5.3) fits equation (4.5) 
depends significantly on the terms wdco't and wL/col that. appear inside the braces 
on the right-hand side of equation (5.5). In the adiabatic limit, where B 2 (t), and 
hence codt), are independent of the time, these terms vanish, equation (5.5) reduces 
to equation (4.5), and the cos coLt form then assumed by equation (5.3) becomes 
its exact solution. 
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Away from the adiabatic limit, for the particular orbits that satisfy equation 
(4.12) initially, and for which A is slowly varying, of course, we may specify that 
the form of 11 given by equation (5.3) for an wdt) that varies slowly with time 
must satisfy the form 

11+wUl ~ 0, (5.6) 

which, from equation (5.5), is consistent with the conditions 

(5.7), 

To see what the conditions (5.7) mean in terms of the behaviour of B 2 (t) in 
time, we consider a Taylor series expansion of B 2 (t+8t), where for convenience we 
choose the short characteristic time increment 8t "" WLI. Then 

(5.8) 

Thus, with neglect of terms involving the third and higher time derivatives of B z , 

we have 

(5.9) 

where we have made use of equation (1.6). 

From the result (5.9) we see immediately that the conditions (5.7) also 
ensure that the coefficient 8Bz/Bz ~ 1, as required for an adiabatic magnetic field 
change with time. In summary, the inequalities (5.7) ensure that 11 of (5.3) is 
a good approximate solution of equation (4.5), and that the temporal variation 
of the magnetic field BAt) is adiabatic. Since we readily find that 

12+wt12 = i Wr!2a(:tf -~t}sin(J WL dt), (5.10) 

the above remarks on 11 apply equally to 12, so completing this examination of 
the adiabatic approxima.tion. 

VI. CONCLUSIONS 

A satisfactorily self-consistent temporal adiabatic analysis of the motion of a 
charged particle in the quasi-static magnetic field of a solenoid has been developed 
by suitable approximation of the exact general solution presented in SLN, and the 
associated adiabatic invariants have been identified. The case of harmonic time 
variation of the solenoid magnetic field, which, as mentioned in SLN, Section VIII, 
was to have been associated with this case, has been made the topic of a separate 
paper now in preparation. 
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