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Summary 

The method of images is used to compute the field between a charged sphere 
and an earthed plane. From this field distribution the electrical conductivity of a 
sphere-plane system and also the temperature distribution during thermal break­
down are determined for ranges of geometrical and electrical parameters. Heat-sink 
efficiencies of the electrodes are included in the calculation, and an experimental 
method for assessing these is proposed. 

1. INTRODUCTION 

In many investigations of dielectrics at fields approaching the breakdown 
value the electrodes are a sphere and a plane. This geometry permits a single well­
defined point of maximum field and gradual reduction of the field away from the 
point. The field lines are not accurately parallel at the axis of symmetry, but for 
sufficiently large sphere radius and small gap the approximation may be sufficiently 
accurate and the field intensity approximates that calculated from parallel-plane 
geometry. Frequently a connection is sought between pre-breakdown and breakdown 
phenomena, often involving pre-breakdown current. Current densities are usually 
measured using plane-parallel specimens to give a definable area of conduction with 
small edge effects. This difference in geometry between breakdown and pre-breakdown 
specimens complicates the connection sought. It is suggested that some problems 
may be resolved by computing the conductivity from sphere-plane measurements 
and using the same specimen for breakdown. 

At higher temperatures (Hanscomb 1962) the initial electrical conductivity 
of alkali halides is sufficient to give rise to Joule heating, with consequent cumulative 
increase of conductivity and temperature. The basic equation of heat generation and 
conduction in a material in which an electric field is established is (O'Dwyer 1960) 

aF2 = Cv dTjdt - Kl 'i/2T, (1) 

where a is electrical conductivity, F is electric field (magnitude), Cv is specific heat 
at constant volume, T is temperature, t is time, and Kl is thermal conductivity. 
Hitherto this equation has not been solved for sphere-plane electrodes such as are 
used in experimental investigations. 

II. CONDUCTIVITY CALCULATION 

This computation involves solution of the field between a sphere and a plane. 
The analytical solution (e.g. Jeans 1948) involves awkward parameter changes and 
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infinite series whose terms are not expressible in elementary functions. For numerical 
computations the method of images is suitable. It may be shown that the field 
between two spheres charged to equal and opposite potentials may be represented 
as being due to slowly converging infinite series of point charges inside the spheres. 
For spheres of equal radius the required sphere-plane field is that existing between 
one sphere and the plane of symmetry midway between the spheres. 

From electrostatic theory (e.g. Pugh and Pugh 1960) recurrence relations for 
the charges and their locations have been derived, namely, 

Ql = 4m:oRV , 

D1=R+G, 

Qn-l R 
Qn = Dl+Dn-l 

R2 
Dn = D 1 - T\+Dn_1 

n = 2, 3, 4, ... , 

n = 2, 3, 4, ... , 

(2) 

(3) 

(4) 

(5) 

where R is sphere radius, V is sphere potential, G is sphere-plane gap, and D is distance 
measured from the plane. Each Qn has a corresponding charge ---,Qn situated at 
-Dn in the image series. 

We also introduce the parameter B = RIG. For most experimental work B 
lies in the range 10-1000. It is found that in this range DnlDn-l approaches unity 
monotonically from below. When Dn approximates Dn- 1 within the accuracy of the 
calculation the charges accumulate at a point given by 

Doo = (2RG+G2)1/2. (6) 

(Approximation to 5 parts in 108 is given by n = 20 for B = 10 and by n = 170 for 
B = 1000.) The remaining Qn are seen to form a geometric progression. Hence, a 
finite series of Qn may be used, the last computed Qn (say Qk) being replaced with 

Qk 
Q" = 1 - R(DI +.zj~)-l . (7) 

The field at a point (8, z) may readily be computed in its components by summing 
the contributions from all the Qn and -Qn (see Fig. 1). 

Using the field components computed in this way the dielectric may be divided 
into cells having cylindrical symmetry and whose sides are always parallel to the 
local field. Twenty such cells were used (see Fig. 2). Conduction is assumed to be 
zero except through the area projected on the plane by the sphere; experimentally, 
a guard ring of radius R would be used. Assuming ohmic material fills the region 
between the sphere and the plane, resistances of the cells are computed by numerical 
integration. The vertical height of the increments is shown in Figure 2. Paralleling 
the cell resistances gives a resistance Z between the electrodes. (Conduction in the 
outer cells, however, considerably influences the value of Z (Fig. 3), and thus fairly 
accurate guard ring dimensions are needed.) 

The resistance of a cylindrical slab of dielectric of radius R and thickness G 
is computed and divided into Z. A universal dimensionless factor 0 results which 
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depends only on B. Values of C(B) are given in Table 1, together with ratios of 
conducting-region-of-sphere radius Rc (Fig. 2) to sphere radius R. Standard finite 
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Fig. I.-Geometry for determination of sphere-plane field due to point charges Qj. 

difference techniques (Hildebrand 1956) were used to interpolate lOO values of 
C(B) and {C(B)}-l per decade of B on a log-log basis. Four-digit accuracy was obtained . 
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Fig. 2.-Cross section of dielectric-filled cells with sides 
parallel to the electric field. Cells are obtained by rotating 
the cross sections about the axis of symmetry. The size of 
intervals for numerical integration (conductivity calculation) 
and subcell size (breakdown calculation) is indicated by the 
horizontal lines to the right of the axis of symmetry. The guard 

ring defines the area of conduction from the plane. 

For known values of sphere radius and gap the measured resistance of a sphere­
plane system needs only to be divided by C(B) to give the resistance of an equivalent 
disk of dielectric of radius R and thickness G. The conductivity of the dielectric 
may then easily be found. 
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Fig. 3.-Resistance of cells as a function of cell "radius". The mmunum 
resistance is not at the axis of symmetry, and conduction is appreciable even 
at the radius of the guard ring. (Unit conductivity dielectric and sphere radius 

1000 units assumed.) 

TABLE 1 

UNIVERSAL DIMENSIONLESS SPHERE-PLANE CONDUCTIVITY FUNCTION O(B) 
AND RATIO RelR 

LogB B O(B) RelR 

1·00 10·000000 3·202993 0·768336 

1·25 17·782794 4·390906 0·779465 
1·50 31·622777 6·277883 0·785766 
1·75 56·234133 9·304461 0·789322 

2-00 100·000000 14·143108 0·791324 

2·25 177·827943 21· 914279 0·792451 
2·50 316·227769 34·714341 0·793084 
2·75 562·341332 55·441690 0·793439 

3·00 1000·000000 89-7l3647 0-793640 
- -
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III. THERMAL BREAKDOWN CALCULATION 

It is assumed for the solution of equation (1) that 
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(i) G = GO exp( -4>(kT), where GO is constant, 4> is activation energy, k is 
Boltzmann's constant, and T is temperature (OK); 

(ii) F may be computed as for the conductivity calculation; 
(iii) Cv is constant over the temperature range; 
(iv) Kl is constant over the temperature range; 
(v) \j2T may be obtained by linear approximations to the differentials. 

Assumption (i) may be justified empirically (e.g. Hanscomb 1962), as may assumption 
(iii) (e.g. Clusius, Goldman, and Perlide 1949). At high fields, space charge accumula­
tion in the dielectric should be small in comparison with the charges on the electrodes, 
and (ii) is thereby justified. Experimental data for Kl were not available above 
100°C (McCarthy and Ballard 1960), but, as Kl is reasonably constant above the 
Debye temperature of c. 7°C for NaCI, (iv) is the simplest extrapolation to make. 
For small cells (v) should introduce negligible error. 

Cv is used rather than Cp as the small hot region is contained in the rest of the 
dielectric. Also Cp would have a stabilizing effect as it increases with temperature 
(J. R. Shepanski, personal communication). 

Solution proceeds by dividing the dielectric into cells and subcells as for the 
conduction problem. Only the inner 12 cells are used as the outer cells remain at 
ambient temperature, a boundary condition justified by the small (c. 1 degC) 
temperature rises of the outermost cells used in the calculations. 

Taking a small increment of time dt and using assumptions (i)-(v) the tempera­
ture rise dT for a subcell may be computed from equation (1). This is done for all 
sub cells in the dielectric. Subcells adjacent to those in the dielectric but themselves 
inside the electrodes are then assigned temperature increments dT. These are calcu­
lated as (I-S(100) times the difference between the temperature of the subcell and 
the temperature of the adjacent dielectric-filled subcell. Varying the parameter 
S between 0 and 100% allows simulation of different electrode heat-sink efficiencies. 
All these subcell temperature increments are stored in a matrix as they are computed. 

Addition of this matrix to the sub cell temperature matrix gives new values 
of temperature for all the subcells. A further time increment is now taken and the 
sub cell temperatures computed again. If either a predetermined number of tempera­
ture increments have been computed, or if any cell has exceeded a predetermined 
temperature T p , the temperature matrix is printed out. These printed matrices form 
a sequence analogous to the frames of a motion picture film, the last portion after 
Tp is exceeded being in "slow motion". Execution is terminated one increment 
after a predetermined melting temperature T m is exceeded in any cell. 

In order to make the programme as general as possible 18 parameters are read 
at execution time. These specify the voltage magnitude and waveform, specimen 
geometry, and thermal and electrical constants (including T m , T p , and the ambient 
temperature To) and print out controlling parameter, abnormal conditions para­
meters, electrode heat-sink efficiency S, and time increment dt. 
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Variation of all these parameters through wide ranges is impracticable. Fixed 
values (typical of NaCI) are used for all parameters except those varying in the 
investigation, as follows: 

R = 4XlQ-3 m ; 

G = 2xl0-4 m ; 
Cv = 1'9x1Q6J/m3 ; 

KI = 5·0 W m-l (degC)-I; 
~=1·0eV; 

ao = 2'5x1Q4mho/m; 

To = 350°C; 
Tp = 500°C; 

Tm = 800°C; 
s=O%; 
F = 0·25 MV/cm; 
dt = 2·0 X 10-5 sec. 

The temperature matrix was printed out every 50 increments. It was assumed, also, 
that the voltage pulse is instantaneously applied and constant thereafter until the 
temperature of the hottest part of the dielectric reaches the melting point. 

TABLE 2 

TIME TO BREAKDOWN t*, AS A FUNCTION OF FIELD STRENGTH F* AND 

CONDUCTIVITY a, AND COMPUTED K VALUES (K == F*(t*</>/Gf)1/2) 

a Gf F* t* 
K 

(mho/m) (MQ) (MV/em) (msec) 
-

l'Oxl05 0·054 0·5 0·104 0·69 
0·25 0·40 0·68 
0·1 2·48 0·68 

2'5xl04 0·216 1·0 0·11 0-71 
0·5 0·41 0·69 
0·25 1·64 0·69 
0·1 10·72 0·70 

5·0 X 103 1·08 1·0 0·51 0·69 
0'5 2·12 0·70 
0·25 8·52 0·70 

Using impulse thermal theory (O'Dwyer 1960) it may be shown that the peak 
voltage of a linearly rising transient is .../3 times that of an instantaneously applied 
constant voltage giving the same time to breakdown t*. Hence, when the thermal 
conduction term from (1) is small, the present results may be related to the experi­
mental values of Hanscomb (1962) and of Butler and Hanscomb (1965), in which 
linearly rising transients were employed. It may be shown that (Butler and Hanscomb 
1965), for impulse thermal breakdown with constant specimen geometry and ambient 
temperature, K - F*(~t*/fYI)I/2 is constant. F* is the breakdown field strength 
(MV/cm), t* is the time to breakdown (msec), ~ is the activation energy for conduction 
(eV), and fYI is the low-field specimen resistence (MQ). K has a value of 1·5 for linearly 
rising transients and, hence, a value of 0·87 for constant voltage. 

Computed K values (see Table 2) are seen to be constant for considerable 
variations in F* and fYI, as predicted by impulse thermal theory. This indicates 
that valid comparisons may be made with experiment as outlined above. The 20% 
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discrepancy between computed and experimental K values may be reconciled by the 
fact that no guard ring was used in the measurement of experimental fYl values_ 
Use of a guard ring would increase the experimental value of fYl and hence decrease 

TABLE 3 

EFFECT OF ELECTRODE THERMAL SINK PARAMETER S ON TIME TO 

BREAKDOWN t* 

With S = 100% and F* = 0-1 MV/em, thermal conditions are stable after 
10 msee 

F* S t* 
K 

(MV/em) (%) (msee) 

0-5 0 0-41 0-69 
10 0-43 0-71 
31-6 0-46 0-73 

100 0-48 0-75 

0-25 0 1-64 0-69 
10 1-69 0-70 
31-6 1-72 0-71 

100 1-98 0-76 

0-1 0 10-72 0-70 
10 10-76 0-70 
31-6 10-86 0-71 

100 OCJ OCJ 
----- -_. __ ._--

the experimental value of K_ A value for 0(20) = 4-707 has been used in the present 
conversion from conductivity to resistance, and this value depends on conduction 
from the plane being limited to the projected area of the sphere_ Agreement is 
therefore considered to be adequate_ 

TABLE 4 

EFFECT OF '" ON LOW-FIELD RESISTANCE fJt AND TIME TO BREAKDOWN t* 

'" 
fJt t* 

K 
(eV) (MQ) (msee) 

0·9 0-030 0-25 0-68 
1·0 0·216 1-64 0-69 
I-I 1-42 11·10 0·73 

It is seen that the conduction of heat away into the specimen itself does not 
affect K greatly, and impulse thermal theory holds for times to breakdown less than 
10 msec, when the electrodes absorb no heat. However, K is not constant, and the 
simple theory is not sufficient when the electrodes are good heat sinks and the time to 
breakdown is longer than a few milliseconds, as shown in Table 3_ In the experimental 
work quoted above the electrodes were aluminium blocks_ The higher values of K 
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TABLE 5 

EFFECT OF SPECIMEN GEOMETRY ON SPECIMEN RESISTANCE !Ji AND TIME TO 

BREAKDOWN t* 

Values 0(10) = 3'203, 0(20) = 4'707, and 0(50) = 8·573 used 

R !Ji t* 
K 

(m) (MO) (msec) 

2·0 X iO-3 0·588 1·68 0·42 
4·0 X 10-3 0·216 1·64 0·69 
1·0 X 10-2 0·063 1·70 1·30 

7 8 
\ I 1. Impulse thermal theory 

501- 6\ \ 2. 5 =0% 

4\'~' 3. 5 =50% 3 5 \ . \ 

2\\~\~ , 4. 5=75% 
1\" ~ , 5. 5 =85% ~~ 'tJ. 

6. 5 =95% 
7. 5=97% 

201- \,\ \ \ \ 8. 5=99% 
9. 5= 100% 

~'\\ \ 
"'"' tJ ., 
'" E 10 

'--' 

* 

5 

2 

270 290 310 330 350 370 

To{°C) 

Fig. 4.-Time to breakdown t* as a function of ambient temperature To, for 
electrode heat-sink parameter (8) values between 0 and 100% and also as pre­
dicted by impulse thermal theory. Experimental 8 values may be determined 
by fitting experimental curves. Curves for 8 = 99 and 100% go to infinity, 
as stable thermal conditions ensued after 20 msec at the next lowest ambient 

temperature investigated. 
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associated with high S values are probably closest to the experimental conditions, 
and further reconciliation of computed and experimental K values is thereby effected. 

Table 4 shows that, although changes in ~ cause large changes in fJf via the 
conductivity equation, the impulse thermal theory accounts fairly well for the 
resulting changes in t*, as K is nearly constant. It has not been determined whether 
this is still true for large S values. 

The spherical cavity in the NaClspecimens used in the experimental work 
quoted above was not accurately measured, being ground out and polished with a 
moist cloth lap. This uncertainty could help to reconcile the discrepancy between 
the experimental and computed K values (see Table 5). Although the resistance of 
the specimen (and with it, K) varies greatly the time to breakdown is nearly constant. 
These results suggest that specimen geometry is more important than has hitherto 
been supposed. 

Impulse thermal theory predicts a variation of t* with ambient temperature 
of the form 

t* = ATijexp~kTo, (8) 

where A = Cvk/(F*2ao~). Computed curves of t* as a function of To for various 
values of S are shown in Figure 4. It is suggested that S may be determined experi­
mentally from these curves, and work is proceeding along these lines. 

With the exception of cases where steady thermal conditions were set up and no 
breakdown occurred, all these solutions of equation (1) showed similar features. 
For about the first 80% of the time to breakdown the temperature of the hottest 
cell rises linearly. Mter exceeding a value of approximately 450°C the temperature 
rises rapidly and quickly exceeds the melting point. Even if the time at which this 
occurs does not coincide with the time to breakdown the uncertainty in t* is small, 
as invariably the last few cycles of computation show very rapid temperature changes 
in the hottest cells. The position of the hottest subcell is always on the axis of 
symmetry and does not vary during the solution. For S = 0% this subcell is at the 
sphere, where the field is most concentrated, and for S = 100% it is midway between 
the plane and the sphere. 

The only cumbersome feature of the programme was that the maximum time 
increment dt that could be used was 20 fLsec. Long time increments permitted some 
cells to "dissipate" more heat than was generated in them, resulting in negative 
temperatures. As reduction of dt below 20 fLsec gave identical solutions this increment 
was used except for short times to breakdown. The criterion then was that at least 
50 increments be used for solution. 

Solutions required. approximately 1 sec of execution time per time increment 
using an IBM 360/40 computer. Thus, 1 msec of "time to breakdown" may be simu­
lated in 1 min of execution time. Values of t* above about 25 msec, therefore, are 
impractical if extensive investigation of solutions is to be undertaken. Since the 
time to breakdown is less for a given value of F* when a constant field is applied 
rather than a linearly rising pulse, it is suggested that this waveform be used when 
comparison with computed values is required. 
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