
DEFOCUSING-FOCUSING COLLISION SEQUENCES 

By M. C. E. PETERSEN* 

[Manu8cript received October 28, 1966] 

Summary 

A defocusing collision sequence with initial energy greater than the focusing 
energy can be converted into a focused collision sequence. This is demonstrated in 
the "hard sphere approximation" by taking account of the energy loss due to 
interaction with neighbouring lattice rows. 

It seems fairly well established in the radiation damage of crystalline solids that 
lattice-correlated collisions are generated at the low energy end of a collision cascade 
initiated by an energetic primary knock-on (Leibfried 1964). A simple model, 
proposed by Silsbee (1957), can be used to describe one type of correlated collision. 
He suggested 

1. In almost head-on collisions between two atoms of equal mass, at the point 
of closest approach we can write 

V(R) = tE, (1) 

where V(r) is the interatomic potential, R is the distance of nearest approach, 
and E is the energy of the incident atom. The effect of the small impact 
parameter can be neglected. 

2. The repulsive component of the interatomic potential is sufficiently steep to 
permit the collision of two atoms to be described as a collision between two 
"hard spheres". The radius of each sphere is R/2, where R is determined 
from equation (1). 

3. A sequence of head-on collisions can result in energy transport along 
close-packed directions in a crystal lattice. 

Consider an isolated line of atoms. The separation between each is D. If one 
atom moves away from the line with an energy E and at a small angle 81 and collides 
with its nearest neighbour, the neighbour will move away from the line with an angle 
82. For small angles 81 and 82 the geometry imposes the relation 

~ = (!! -1) 81 R ' 
(2) 

where R is the collision radius, determined by (1). When R>D/2, 82 < 81. Continuing 
this process along the line of atoms a series of almost head-on collisions occurs, the 
angular deviation of successive atoms becoming smaller and the energy transfer at 
each collision becoming more and more complete. This sequence of collisions has been 
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called a "focused collision sequence", or, more briefly, a "focuson". The limiting 
value of the collision radius for this to occur is obtained from (2) when 82 = 81, i.e. at 
R = Dj2. Collisions ofthis sort propagating along the (nO) directions offace-centred 
cubic crystals give rise to the familiar spot patterns obtained in metal single-crystal 
sputtering experiments (Anderson and Wehner 1960; Nelson and Thompson 1961). 

Alternatively, if R < Dj2 then 82 > 81 and the angular divergence of successive 
atoms along the line increases continuously until the sequence terminates as eventually 
one atom completely misses its nearest neighbour. 

The short-ranged repulsive component in the interatomic potential of a metal is 
often written in the Born-Mayer form (Huntington 1954) 

V(r) = A e-r1a . (3) 

The constants a and A are chosen to fit the elastic constants of the metal. In radiation 
damage it is usually agreed that the long-ranged, slowly varying, attractive component 
of the interatomic potential may be neglected (Lehmann and Leibfried 1961). In the 
almost head-on collisions being considered, equations (1) and (3) may be combined 
to give 

E = 2A e-R1a , (4) 

and the relation between the collision radius and energy is determined. Following 
Leibfried (1959) we define the limiting energy E r, called the focusing energy, by 
substituting R = Dj2 into equation (4). This gives 

Er = 2A e-D/2a. (5) 

At energies below Er a sequence of collisions focuses. Equation (4) can be inverted to 
give the collision radius as a function of the incident atom's energy. With the aid of 
(5) it becomes 

D E 
R="2- aln Er' (6) 

Thus, for a given energy a collision radius is determined that will result in a sequence 
of collisions that are either focusing or defocusing. 

In a metal, however, E is not a constant for all the collisions in a sequence 
propagating along a line of atoms. It is decreased continually by thermal vibrations, 
non-head-on collisions, and interactions with neighbouring rows of atoms. The most 
important, for angular deviations less than approximately 5°, is the loss to neighbouring 
rows of atoms. Dederichs and Leibfried (1962) have shown that this is almost constant 
at 0·7 eV for the (nO) direction in copper, which confirms an earlier estimate of 
Leibfried (1959) and agrees well with the result obtained by computer simulation of 
these events by Gibson et al. (1960). Thus, the energy at the nth collision can be 
written as 

E(n) = Er(l-n€), (7) 

where € ( = 1·1 X 10-2 for copper (Leibfried 1959)) is the relative loss per collision at 
Er. For n<O, E>Er; and for n>O, E<Er. According to Leibfried (1959) the small 
angular changes at each collision permit us to replace 8n by the continuous function 
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O(n) and, hence, to write O(n+l) = O(n)+O'(n). Using this in equation (2), combined 
with (6) and (7), we obtain the diffential equation 

dO _ 2{ 1 -1}O 
dn - 1 - (2ajD) In(l-n€) . 

(8) 

Now, for n€ < 1, expansion of the first term in the brackets in a Taylor series gives 

dO {2a a (4a) } dn = 2 --:- D €n - D 1 - 15 €2 n 2 + ... O. (9) 

Integrating this equation and using the condition that, at E = E r, n = ° and 0 = Or 
gives 

o {2a€ 2a€2( 4a) } - = exp - - n2 - - 1 - - n 3 + 
Ot D 3D D··· , 

(10) 

which can be written in terms of energy using equation (7). 

Neglecting the term in n 3 in equation (10) we see that the angular divergence of 
successive atoms, as a momentum pulse travels along a line, is a Gaussian relation 
centred at n = 0, i.e. at E = E t . Thus, for n < 0, i.e. for E > E r, the angular deviation 
increases to a maximum at Or, and thereafter the deviation decreases as one expects 
in a usual focused collision sequence with E <Er. As an example of the effect in 
copper we calculate the values of nand E that give 0 = tOt and 0 = tOr. The values 
a = Dj13 and A = 22·5 keY are used in the interatomic potential (Lehmann and 
Leibfried 1961). When 0 = tOf, n = ±20 and (E-Er)jEf = ±0·22; similarly, at 
0= tOr, n = ±31 and (E-EdjEf = ±0·34. 

Duesing and Leibfried (1965) have given an analysis of a collision sequence 
propagating along a close-packed line of atoms correct to second-order terms in the 
impact parameter. The exact relation of the angular deviation of an atom to its 
energy at each collision in a sequence was obtained iteratively and included angular 
losses, the calculation being valid to O~ 12°. The results given above are in general 
agreement with that of Duesing and Leibfried apart from the overestimation of Ef in 
the "hard sphere" model used here. 

In taking explicit account of the energy dependence of the collision radius this 
calculation, within the confines of the "hard sphere" approximation, has two 
important results. 

1. For energies E > Ef a focused collision sequence may be created by 
conversion of a defocusing collision sequence at E = Er. This is in contrast 
to the result obtained when a constant collision radius is used (Leibfried 
1959). 

2. For E > E r, R < Dj2, the incident particle is closer to the equilibrium site of 
the target atom than its own site at the instant of the collision. The 
incident atom will replace the target atom when it moves off after the 
collision. From the values given in the preceding paragraph it is clear that 
a succession of replacement collisions may transport an interstitial some 
20-30 lattice spacings. Further, replacement collisions can occur down to 
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an energy E = lEr, this being due to the "non-hard-sphere" character of 
the interatomic potential (Thompson 1964). Using E = lEr in equation (7) 
with the above results it is seen that an interstitial may be dynamically 
transported through the lattice by correlated collisions and separated by up 
to 100 lattice spacings from the vacancy at the beginning of the sequence of 
collisions. 

The author thanks Dr. J. C. Kelly of the University of New South Wales for his 
critical comments. 
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