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Summary 

Keen et al. (1965) have described the use of seismometer arrays for detecting 
earthquakes and underground atomic explosions. The purpose of the present paper 
is to investigate the merits of various correlation statistics based on the records from 
such an array. Assuming the probabilities of incorrect detection to be fixed in 
advance, a good statistic is one that (I) depends upon the observations only, 
(2) can detect a disturbance with small signal-to-noise ratio, and (3) is easy to 
compute. All the statistics considered possess property (1). Property (2) can be 
made more precise by defining the "efficiency" of a statistic. The amount of 
computation may be reduced (as suggested by Watts 1962) by digitalizing the 
records from the array, an extreme case of which is the situation when only the 
sign of each observation is recorded. 

The results of the present paper suggest that considerable gain in efficiency 
may be achieved by using a correlator that sums all possible products of pairs of 
synchronized records, rather than one that simply multiplies the average disturbances 
from two arrays. While this involves a large number of multiplications, the 
computation may be simplified either by a coarse digitalization of both terms in 
each product, or by multiplying the first term in each product by the sign of the 
second. In both cases it is shown that the efficiency is not greatly reduced. 

I. INTRODUCTION 

The problem of detecting a stationary signal in the presence of stationary 
random noise has received much attention in recent years (see, for example, Wainstein 
and Zubakov 1962). The stationarity of the signal enables one to estimate its power 
consistently, that is, to find estimates that tend in probability to the true value of 
the power as the length of the record tends to infinity. A very good method for 
determining both the power and direction of the signal is the so-called crosscorrelation 
technique, in which the records from two receiving stations, sufficiently distant in 
location for the outputs to be statistically independent, are synchronized, multiplied, 
and averaged over time. The crosscorrelation method is improved by averaging the 
records from several receiving stations (see Jacobson 1957). 

The case when the signal is not stationary, but dies out after a finite time (as 
would be the case for an earthquake or atomic explosion), does not seem to have 
received much attention in the literature. In this situation it is clearly impossible to 
find consistent statistics for estimating the power or detecting the presence of the 
signal with only two receiving stations. However, if we have a number of stations, 
it is possible to construct statistics that tend in probability to the true value as the 
number of stations tends to infinity, and are thus consistent. 

In the present paper we investigate the problem of testing for the presence of 
a signal of the latter type. Various statistics, consistent in the above sense, will be 
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defined, and judged according to two criteria, ease of computation and efficiency. 
A natural way to compare the efficiencies of several statistics is to compute the 
signal-to-noise ratio detectable by each statistic with pre-assigned errors of the first 
and second kind. Clearly the smaller the signal-to-noise ratio required, the more 
efficient will be the statistic. Since quantization of the values of a record (which 
includes digitalizing and rounding-off) considerably reduces the amount of compu­
tation and, as we shall see, hardly reduces the efficiency of the test statistic, we will 
consider this aspect in detail. 

II. THE STATISTICAL MODEL 

Let S(t), with - 00 < t < ro, denote the signal. We wish to test the hypothesis 

Ho :S(t) = 0 for t'::( t ::( t' +T 
against the alternative 

HI :S(t) - S*(t) for t'::( t ::( t' +T , 
for particular values of t', T, where S*(t) is of known form but may involve one or 
more unknown parameters. The data consist of the set of 2n records 

Xi(t) = S(t+Ti)+Ni(t+Ti) ' i=I,2, ... 2n, (1) 

recorded at receiving stations sufficiently different in location for Xt(t) and Xj(t+T), 
i *" j, to be statistically independent for all values of T. The stations are arranged 
in the form of a right-angled cross and there are n stations on each arm. Let each 
Nt(t) have zero mean value and finite variance a 2 , and common covariance function 

E[N(t)N(t-T)] = R(T). (2) 

Finally we assume that the "lags" Ti, i = 1,2, ... 2n, are known. This is true if the 
direction of the signal is known. 

Since the signal may be expected to undergo some distortion in passing from 
mie station to another, it would be more realistic to replace equation (1) by 

Xi(t) = Si(t+Ti)+Ni(t+Ti) ' i=I,2, ... 2n. (3) 

However, if the functions Si(.) are monotonic functions of S, the above refinement 
will make little difference to the results we are about to prove, and for mathematical 
convenience equation (1) will be assumed. 

III. DEFINITIONS OF THE STATISTICS 

It is fruitless to look for fully efficient statistics (see Appendix) for testing 
Ho against HI. However, it is natural, and mathematically convenient, to use 
statistics based on quadratic forms in the observations. Let 

ft'+T n 2n 
01(t', T) = (n211) -1 1': 1': Xi(t-Ti,) Xi(t-Tj) dt. 

t' i-I i-n+l 
(4) 

01(t',T) is the statistic used by Jacobson (1957) to estimate the direction ofa stationary 
signal. 
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Define 
(t'+T 2n 

C2(t', T) = {n(2n-1)T}-1 J t' i=t1=2 Xi(t-Ti) Xj(t-Tj) dL (5) 

i<j 

Clearly C1(t',T) is simpler to compute than C2(t',T), since C2(t',T) involves n(2n-1) 
multiplications before averaging wherealS C1(t', T) requires only one_ However, it 
will be shown that C2(t',T) is more efficient than C1(t',T). Put 

e'+T n 2n 

Ql(t', T) = (n2T)-1 J t' i~l j=~+l g(Xi(t-Ti)) g(Xj(t-Tj)) dt, (6) 

where g(.) is a single-valued function. If g(.) is a step function, g(Xj) may be called 
the quantized or, in the case of a step function with uniform jumps and intervals, 
digitalized value of Xj. An example of very coarse quantization occurs when 
g(x) = sgnx. In this case the record takes one of two values at each instant, and is 
said to be "infinitely clipped" (see, for example, McFadden 1958). 

In Section VI we shall discuss statistics of the form 

(t'+T n 2n 

Q~(t', T) = (n2T) -1 J t' i~l j=~+l gl(Xi(t-Ti)) g2(Xj (t-Tj)) dt, (6a) 

the functions gl(.) and g2(.) being different. As a special case of this, statistics in 
which gl(X) = x will be considered. This corresponds to quantizing only one of the 
factors in each product XiXj , and the merit of this was discussed by Watts (1962). 

An alternative to Ql(t', T) is the statistic 

(t'+T 2n 

Q2(t', T) = {n(2n-1)T}-1 J t' 12-1=2 g(Xi(t-Ti)) g(Xj(t-Tj)) dt, 
i<j 

(7) 

which may be regarded as the quantized analogue to C2(t',T). Using equations (1) 
and (2), it follows from equations (4), (5), (6), and (7) that the mean values of the 
above statistics are given by 

It'+T 
E[Cr(t', T)] = T-1 S2(t) dt, 

t' 
r = 1,2, (8) 

and It'+T 
E[Qr(t', T)] = T-1 E2[g(S(t)+N(t))] dt, 

t' 
r = 1,2. (9) 

In view of equation (8), C1(t',T) and C2(t',T) are unbiased estimators of the mean 
square of the signal over the interval (t',t'+T), while, from equation (9), Ql(t',T) 
and Q2(t', T) are biased estimators of this quantity. Let us determine the magnitude 
of this bias in the case when g(S(t)+N(t)) represents a digitalized record. Put 

g(x) = pd+€ for (p-t)d+€ ~ x < (p+t)d+€, (lO) 

where p ranges over all integers and d > 0 and € are constants representing the size 
and position of the digitalizing intervals. It follows that 

ctJ f(P+tld+e 
E[g(S(t)+N(t))] = ~ (pd+€) f(x) dx, 

p=-ctJ (p-tld+e 
(11) 
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wheref(x) is the probability density function of S(t)+N(t) for fixed t. Expanding the 
right-hand side of equation (11) in a Fourier series, after Fisher (1922), we have 

d OCJ (-I)P 
E[g(S(t)+N(t))] = S(t)+- ~ --c/>(-217pjd)sin[217p{S(t)-E}jd], (12) 

17 p~l P 

where c/>(u) is the characteristic function of N(t), that is, 

c/>(u) = E[exp{iuN(t)}] = J~OCJ exp(iux) f(x+S(t)) dx. (13) 

If the noise is Gaussian, c/>(u) = exp( -ta2u2) and, substituting equation (12) in (9), 
we obtain 

, -lft'+T( d OCJ (-I)P 222 2 . )2 
E[Qr(t ,T)] = T S(t) + - ~ --exp( -217 a p jd ) sm[217p{S(t)-E}jd] dt, 

t' l7p~l P 

r=I,2. (14) 

Observe that the bias due to digitalizing, which is given by the right-hand side of 
equation (14), is very small if d is smaller than a, the standard deviation of the noise. 

The bias due to infinite clipping, that is, when g(x) = sgnx, may be obtained 
from equation (12) by the following argument. It is clear that infinite clipping 
corresponds to taking the limiting case of digitalization as d --+ 00 when E = td. 

Thus from equation (12) 

E[sgn(S(t)+N(t))] = lim -d2 (S(t) + ~ ~ ~c/>( -217pjd) Sin{217PS(t)jd}) 
d->OCJ 17 p~l P 

= ~ lim ~ ! c/>( -217pjd) sin{217pS(t)jd}. 
17 d->OCJ p~l P 

(15) 

The above infinite series may be replaced by the equivalent integral in the limit as 
d --+ 00, and we find 

E[sgn(S(t)+N(t))] = LOCJ (2jl7x)sin{217xS(t)}1>(-217X) dx. (16) 

For Gaussian noise, equation (16) becomes 

E[sgn(S(t)+N(t))] = LOCJ (2jl7x)sin{217xS(t)}exp(-2172a2x2) dx 

= erf{S(t)j(2a2)t}. (17) 

It follows that when g(x) = sgnx 

ft'+T 
E[Qr(t', T)] = T-1 [erf{S(t)j(2a2)t}]2 dt, 

t' 
r = 1,2. (18) 

Observe that if S(t)j(2a2)! is small 

f t'+T 
E[Qr(t', T)] = (tl7a2T)-1 S2(t) dt +O({S(t)ja}4). 

t' 
(19) 
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IV. A COMPARISON OF THE EFFICIENCIES OF C1(t',T) AND C2(t',T) 

In order to compare the efficiencies of the four statistics defined above, it is 
necessary to obtain expressions for their variances. Consider first the unquantized 
statistics. From equation (4) 

J
' (t'+T [n n ] 

E[C~(t', T)] = (n4T2)-1 Jt' E t~ k~1 Xt(t-Tt) Xk(U-Tk) 

[ 
2n 2n ] 

X E ~ ~ Xj(t-Tj)XZ(U-TZ) dtdu 
j~n+lZ~n+l 

J
'(t'+T 

= (n4T 2)-1 Jt' {n2S(t) S(u) + nR(t-u)}2 dtdu. (20) 

Thus, using equation (8), 

2 J'(t'+T 1 J'(t'+T 
var[Cl(t',T)] = -2 Jt' S(t)S(u)R(t-u)dtdu+2'2 Jt' R2(t-u)dtdu. 

nT n T (21) 

Making the change of variables t-u = x, u = y, equation (21) may be written 

4 (T (t'+T-X 2 (T 
var[C1(t', T)] = -2 Jo R(x) dx Je' S(y+x) S(y) dy + -2- Jo (1-x{T)R2(x)dx. 

nT n T (22) 

In a similar manner we obtain from equations (5) and (8) 

4(4 1) iT it'+T-a: 
var[C2(t', T)] = n- 2 R(x) dx S(y+x) S(y) dy 

3n(2n-1)T 0 t' 

2 (T 2 

+ n(2n-1)T Jo (l-x/T)R (x) dx. (23) 

When Ho is true, the first terms in the right-hand sides of equations (22) and (23) 
vanish, and 

var[Cr(t',T)] = O(n-2), r = 1,2. (24) 

When HI is true, however, 

var[Cr(t',T)] = O(n-1), r = 1,2. (25) 

In each case it may be shown, using the central limit theorem, that the distributions 
of Cr(t',T)-E[Cr(t',T)], r = 1,2, suitably scaled, are asymptotically normal as 
n ~ 00. It follows from equations (24) and (25) that Cl(t',T) and C2(t',T) are con­
sistent statistics for testing Ho against HI. 

Let ex and f3 be the probabilities of error of the first and second kind respectively, 
that is, 

<X = prob. (reje(lting Ho when Ho is true), 

f3 = prob. (accepting Ho when HI is true). 

(26) 

(27) 

In order to form a basis for comparison of the statistics we will assume that ex and 
f3 are fixed in advance. This imposes restrictions on the function S*(t), which specifies 
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the alternative hypothesis. For example, if S*(t) is of known form, but involves one 
unknown parameter, its amplitude, say, then there is a value of this parameter 
corresponding to each pair of values of a and (3. For this value of S*(t) we define 
the quantity 

Jt'+T 
I'- = (u2T)-1 {S*(t)}2 dt 

t' 
(28) 

as the signal-to-noise ratio corresponding to a test of strength (a,(3). The value of 
I'- depends on the test statistic employed, and clearly the smaller the value of 1'-, 

the more efficient is the statistic. Let us compare the efficiencies of C1(t',T) and 
C2(t',T). 

Assume n is sufficiently large for C1(t',T) and C2(t',T) to be approximately 
normally distributed, the discrepancy being negligible. Let the functions S1(t) and 
S2(t) specify alternative hypotheses that give a test of strength (a, (3) for the statistics 
C1(t',T) and C2(t',T) respectively, so that from equation (28) 

Jt'+T 
I'-r = (u2T) -1 S~(t) dt, 

t' 
r = 1,2. (29) 

Write 

iT Jt'+T-t 
s~ = 2T-2 R(t) Sr(u+t) Sr(U) dudt, 

o t' 
r = 1,2, (30) 

and 

R2 = 2T-1 iT (1-tIT)R2(t) dt. (31) 

Because of the normality assumption, it follows from equations (8), (22), (23), and 
(31) that the distributions of nC1(t', T)IR and {n(2n-l)}?; C2(t', T)IR are standardized 
normal when Ho is true. Employing, in addition, equations (29) and (30), we find 
that when H 1 is true 

n{C1(t', T)-U21'-1}/(R2+2nSr)' and {n(2n-l)}i{C2(t', T)-u21'-2}/(R2+~(4n-l )S~)i 

are also distributed as standardized normal variables. Consequently, for a and (3 
to be the same for each statistic, the critical values '\'1 and'\'2 must satisfy 

( n2 )t fOC! 2 2 2 (n(2n-l))t fOC! 2 2· 
--2 ;. exp(-!n x IR ) dx = 2 A exp{-!n(2n-l)x IR } dx = a, 
27TR 1 27TR 2 (32) 

and 

( n2 )t f OC! 

27T(R2 +2nSi) ;'1 exp{ _!n2(x_U21'-1)2/(R2 +2nSi)} dx 

_ ( n(2n-l) )t fOC! 
- 27T{R2 +i(4n-l)S~} ;'2 exp[ -in(2n-l)(x-u21'-2)2/{R2 +i(4n-l)S~}] dx 

= 1-(3. (33) 

Equations (32) reduce to 

'\'1 nlR = '\'2{n(2n-l)}i IR = c(a) , (34) 
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where c(a) is given by 

a = roo (217)-t exp( _!X2) dx. 
JC(IX) 

Substituting for Al and A2 from equations (34), equations (33) reduce to 

c(a)R-na2fLl = c(a)R-{n(2n-1)}la2fL2 = c(I-,8). 

(R2 +2nS~)1 {R2 +i(4n-l)S~}t 
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(35) 

(36) 

From equations (36) the values of fLl and fL2 may be found, provided the signal is 
specified except for a single unknown parameter. Suppose this parameter is the 
amplitude, and let us investigate the effect ofl,\.<l form of the signal upon fLl and fL2. 

Define 

IT R d It'+T-t d S2 2 (t) t SI(U+t) Sl(U) U 
1 0 t' 

A = a4fL1 = a2T IOT S~(t) dt 
(37) 

The form of the function S1(t) determines the value of A. Using equation (37), 
equations (36) imply that 

{ } 2 { } 2 2 Rc(a) 2 R 2 2 
fL1-;' -2-+AC (1-,8) fLl+ 42 c (a)-c (1-,8) = 0, 

a an 
(38) 

and, consequently, that the maximum (minimum) value of fLl, and similarly fL2, 
occurs when A takes its maximum (minimum) value. It seems difficult to find the 
precise forms of the function Sl(t) that respectively maximize and minimize the 
right-hand side of equation (37), but some indication of the wide range of variation 
of A is demonstrated by the following two examples. 

Put R(t) = a2exp{-(tjT)2}. Then 

(1) if Sl(t) = A, where A is a constant, 

A = (2 foT (l-tjT)exp{-(tjT)2} dt) / foTdt = 0·8615; 

(2) if S1(t) = A sin{217(t-t')jT}, where A is a constant, 

I: {COS(217tjT) + (217) -1 sin(217tjT)}exp( _t2jT2) dt 
A = = 0·0500. I: sin2(217tjT) dt 

From equation (31), R = 0·8741 a 2• Suppose now n = 20 and a =,8 = 0·025. 
Then, from equation (38), fL1 = 0·502 for case (1), and fL1 = 0·191 for case (2). It 
would thus appear that the "square wave" is much more difficult to detect than the 
sine wave. 

To compare fL1 and fL2 for various values of a, ,8, and n, let us put 

R(t) = a2exp{-(tjT)2} and Sr(t) = A r sin{217(t-t')jT}, r = 1,2_ 
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Equation (38) becomes 

fLi-n-l{1'7482c(C() +0'1000c2(1-,8)}fLl +0'7640n-2{c2(C()-c2(1-,8)} = 0, (39) 

and the corresponding equation for fL2, obtained from equations (36) in a similar 
manner, is 

( 2 ) 2 - (4n-1)c (1-,8) 
fL2-{n(2n-1)} t 1·7482c(C()+0·0333 fL2 

{n(2n-1)}t 

0·7640 ( 2 2.) 
+ '" "c (C()-c (1-,8) = 0. 

TABLE 1 

VALUES OF SIGNAL-TO-NOISE RATIOS FOR VARIOUS VALUES OF IX AND {3 

The values are for the statistics 01(1', T) (upper value) and 02(t', T) (lower value) for tests 
of strength (x, {3), when the signal is sinusoidal and 20 records are used 

{3 ex 
0·01 0·05 0·10 0·20 0·50 

0·01 
0·461 0·379 0·348 0·290 0·207 
0·332 0·284 0·258 0·227 0·167 

0·05 
0·394 0·315 0·274 0·228 0·144 
0·274 0·227 0·202 0·172 0·114 

0·10 
0·358 0·280 0·241 0'194 0'113 
0·244 0·198 0·174 0'144 0·087 

0·20 
0·315 0·238 0·199 0'154 0·074 
0·210 0·165 0·141 0·112 0·056 

0·50 
0·232 0·158 0·121 0·077 
0·150 0·106 0·083 0·054 

(40) 

Note that fLl and fL2 are each approximately inversely proportional to n. Values of 
fLl and fL2 for n = 10 and various values of C( and,8 are shown in Table 1, while Table 2 
gives values of fLl and fL2 for various values of n when C( = ,8 = 0·05. Clearly, for all 
values, C2(t',T) is more efficient than Cl(t',T). 

V. THE EFFECT OF QUANTIZATION 

We now investigate the effect of quantization on the efficiency of each test 
statistic. For the statistic Ql(t',T) we have from equation (5) 

J'ft'+T n n ( 
E[Ql(t', T)] = (n4T2)-1 Jt' i;l k;l E[g(Xi(t-Ti))g(Xk(U-Tk))] 

2n 2n ) 
X ~ ~ 1!J[g(Xj(t-Tj)) g(XI(U-TI))] dtdu 

j~n+1l~n+1 

J' ft'+T 
= (n2T2)-l Jt' {(n-1)E[g(S(t)+N(t))]E[g(S(u)+N(u))] 

+ E[g(S(t)+N(t))g(S(u)+N(u))]}2 dtdu. 
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Now using equation (9) we obtain 

where 

and 

var[QI(t',T)] = 2n-IU2+n-2V2, 

f' (t'+T 
U2 = T-2 Jt' E[g(S(t)+N(t»]E[g(S(u)+N(u))] 

X cov[g(S(t)+N(t»; g(S(u)+N(u»] dtdu 

f' (t'+T 
V2 = T-2 Jt' {cov[g(S(t)+N(t»; g(S(u)+N(u»)]}2dtdu_ 

TABLE 2 

VALUES OF SIGNAL-TO-NOISE RATIOS FOR VARIOUS VALUES 

OF n 

The values are for a test of strength (0 -05,0' 05) when the 
signal is sinusoidal 

t(No. ofnReCords) I ILl IL2 
(for Gl(t', T)) (for G2(t', T)) 

5 0·629 0·467 
10 0·315 0·227 
15 0·210 0·150 
20 0·157 0·112 
25 0·126 0·090 
50 0·063 0·045 

100 0·031 0·022 

Similarly it may be shown that 

, 2(4n-1) 2 1 2 
var[Q2(t ,T)] =" ,e. "U +._ __ V . 
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(41) 

(42) 

(43) 

(44) 

It follows from equations (41) and (44) that QI(t',T) and Q2(t',T) are consistent 
statistics for testing Ho against HI- Let Sr(t) and Ur(t), r = 1,2, specify alternative 
hypotheses that correspond to tests of strength (1X,{3) for Cr{t',T) and Qr(t',T) 
respectively. Write 

Mr = E[Qr{t', T)], r = 1,2, (45) 

and denote by U~ and V~ the right-hand sides of equations (42) and (43) respectively 
with S(.) replaced by U r(.), r = 1,2. From equation (9) 

It'+T 
Mr = T-I E[g(Ur(t)+N(t))]2 dt, 

t' 
(46) 

and, using equation (28), signal-to-noise ratios for QI(t', T) and Q2(t', T) are given by 

It'+T 
Vr = (u2T)-1 U~ (t) dt, r = 1,2. (47) 

t' 
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Proceeding as for equations (36), the signal-to-noise ratios for the four statistics for 
tests of strength (rx,f3) are given by equations (29) and (47), where 

c(rx) R -na2p.l = c(rx) Vl-nM1 = c(I-f3) 
(R2+2nS~)1 (Vl+2nU~)t 

(48) 

and 

c(rx)R-{n(2n-l)}ta2p.2 = c(rx) V2-{n(2n-l)}tM2 = c(I-f3). (49) 

{R2 +i(4n-l)S~}t {V~+i(4n-l)U~}t 

Let us obtain expressions for V2 and U2 in the case when the signal is digitalized, 
that is, where g(x) is given by equation (10). From equation (10) 

00 ff(P+l)d+S 
cov[g(S(t)+N(t»,g(S(u)+N(u))] = ~~ (P1d+€)(P2d+€) f(x,y) dxdy 

, p, P, (p-t)tt+s 
-00 

-E[g(S(t)+N(t))] E[g(S(u)+N(u))], (50) 

where f(x,y) is the joint probability density function of S(t)+N(t), S(u)+N(u). 
Using the Fourier series representation, as in equation (12), and assuming the noise 
to be Gaussian, we obtain 

cov[g(S(t) +N(t», g(S(u) + N(u))] 

= R(t-u) [1+2 P~l (-I)P exp( _2?T2a2p2Id2){cos(21T]J(S~t)+€») + cos (217P(St) +€») }] 

_ d22~'~' (_I)P+(l exp{_2172aB(p2+l)/d2} (eXP{-4172R(t-U)PQld2} 
417p(l pQ 

X COS[217{p(S(t)+€)+Q(S(u)+€)}ld] + sin{217P(S(t)+€)/d}Sin{217 P(S(U)+€)/d}) , 
(51) 

where~' means summation over all integers except zero. V2 and U2 are now found 
by substituting equations (12) and (51) in the right-hand sides of equations (43) and 
(42) respectively. In particular, if dla is sufficiently small for terms involving 
exp( -2172p2a2Id2) to be neglected for all p > 0 (that is, dla ~ 1), we find 

2 -2 flt'+T { d2 
00 (1)2 2 2 2 2-V = T R(t-u) + -2 ~ - exp[ -417 p a {1- p(t-u)}/d ] 

t' 217 p=l P 

X COS{21T]J(S(t)-S(U»/d}f dtdu (52) 

and 

fl
t'+T { dB 00 (1)2 

U2 = T-2 , S(t) S(u) R(t-u) + -2 ~ - exp[ _4172p 2a2{I_p(t_u)}ld2] 
.' t 217 p-l P 

X COS{21T]JS(t)-S((U»/d}} dtdu, (53) 
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where p(t) = R(t)ja2 and is supposed non-negative for t€( -T, T). To this approxi­
mation equation (46) becomes 

ft'+T 
Mr = T- l U~(t) dt, 

t' 
r = 1,2. (54) 

For a numerical comparison of /Lr and Vr, r = 1,2, put Sr(t) = Ar, Ur(t) = B r, 
r 1,2, where Ar and Br are constants and R(t) = a2 exp( -t2jT2) as before. From 
equations (52) and (53) we obtain 

II ( d2 00 )2 V~=2a4 (I-t) exp(-t2)+~ ~ p-2exp[-47ip 2(ajd)2{I-exp(-t2)}] dt, 
o 27r a p-l 

(55) 
and 

II ( d2 00 
U;=2a2B; (I-t) exp(-i2)+~ ~ p-2exp[_47r2p2(ajd)2 

o 27r a p~l 

X {I-exp(-t2)}]) dt, r = 1,2. (56) 

TABLE 3 

VALUES OF SIGNAL-TO-NOISE RATIOS WHEN THE QUANTIZED RECORD IS DIGITALIZED 

The values are for the statistics Or((,T) and Qr(t',T), r = 1,2, for various values of the test 
strength (ex, f3), when the signal is a square wave and 20 records are used 

(ex, f3) (0'01,0·01) (0-05,0'05) (0'1,0,1) (0· 2,0' 2) (0,01,0'5) (0'5,0-01) 

/1-2 0·932 0-527 0·356 0·190 0·147 0·670 
V2 0·950 0·537 0·363 0·194 0·150 0·682 

/1-1 1·339 0·753 0·507 0·269 0·203 0·975 
V1 1·365 0·768 0·517 0·274 0·208 0·986 

Also equations (47) and (54) imply that 

Mr = B~ = a2vr, r = 1,2, (57) 

and from equations (30) and (31) we find 

R2 = 0'7640a4 and S~ = 0·86I5A~a2, r = 1,2. (58) 

If d = a, equations (55) and (56) become 

V~ = 0·7961 a4 and U~ = 0·8775B~a2, r = 1,2. (59) 

Now using equations (57), (58), and (59), and putting n = 10, equations (48) and 
(49) reduce to 

0·8741 c(oc) -l0/Ll = 0·8922c(oc) -lOVl = c(I-,8), 

(0·7640+17 . 23/Ld (0·7961+17 '55vd 
(60) 

and 

0·8741 c(oc) -13·79/L2 = 0· 8922c(oc) -13· 79v2 = c(I-,8). (61) 

(0· 7640+22·40/L2)! (0·7961+22·81 vd 
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Values of ILl, 1L2, vI, and V2 are given in Table 3 for various values of ex and p. Observe 
the trifling effect of digitalization on the efficiency of the test. 

When the quantizing function is g(x) = sgnx, that is, when the record is com­
pletely clipped, we would expect a much greater loss in efficiency than in the above 
case of digitalization. As for E[sgn(S(t)+N(t))], given by equation (15), an expression 
for cov[sgn(S(t)+N(t)), sgn(S(u)+N(u))] is obtainable by taking the limiting case as 
d ~ 00 of digitalization with € = td. For Gaussian noise we obtain from equations 
(17) and (51) 

cov[sgn(S(t)+N(t)), sgn(S(u)+N(u))] 

= lim ~(_ d22~'~' (pq)-lexp{_21T2a2(p2+2pqp(t_u)+q2)/d2} 
/l->OO d 41T P q 

X COS{21T(PS(t)+qS(U))/d}) - erf{S(t)/(2a2)t} erf{S(u)/(2a2)t} , 

1 fIoo 1 2 2 = Ii -exp[ -t{x +2xyp(t-u)+y }]cos{(xS(t)+yS(u))/a} dxdy 
1T -00 xy 

- erf{S(t)/(2a2)t} erf{S(u)/(2a2)t}. (62) 

The integral on the right-hand side of equation (62) is not expressible in closed form. 
However, if S(.)/a is sufficiently small, we may neglect terms involving powers of 
S2(t), S2(u), and S(t)S(u) higher than the first, and write for equation (62) 

cov[sgn(S(t)+N(t)), sgn(S(u)+N(u))] 

= ~(arcsin{p(t-u)}- (S2(t)+S\U))p(t;-U)-2S(t) S(u) _ S(t) ~(U)) . (63) 
1T 2a [1-p (t-u)]t a 

Thus, using equations (19) and (63), equations (42) and (43) become 

( 2 )2 f' (t'+T 
U2 = U1TT J t' S(t) S(u) arcsin{p(t-u)} dt du, (64) 

and 

( 2 )2 f'(t'+T ( 
V2 = 1TT Jt' arcsin{p(t-u)} arcsin{p(t-u)}-2S(t) S(u)/a2 

_[(S2(t)+S2(U))p(t-u)-2S(t) S(u)]/[a2{I-l(t-u)}t]) dtdu. 
(65) 

Similarly, equations (19) and (46) imply that 

It'+T 2 2 
Mr = -2- Ur(t) dt = O·6366vr. 

a 1TT t' 
(66) 

For a numerical comparison of the signal-to-noise ratios, let us put 

R(t) = a2exp(-t2/T2) and Ur(t) = B r sin{21T(t-t')/T}. 
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From equations (64), (65), and (66) we find 

B~ = 2a2 Vr, 

u; = (2a!ry f {(I-t)cos 27Tt + (sin 27Tt)/27T}arcsin{exp( _t2)} dt, 

= 0·0619vr, 

and 
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v; = ~ f {(I-t)arCSin2{eXp(-t2)}- ~r arCSin{eXP(-t2)}((I-t)COS(27Tt)+(Sin27Tt)/27T 

+{I-exp( _2t2)} -t [exp( -t2){I-t+(sin47Tt)/47T}-(I-t)cos(27Tt) 

+ (sin 27Tt)/27TJ) } dt 

= 0·6751-2·2543vr. 

TABLE 4 

VALUES OF SIGNAL-TO-NOISE RATIOS FOR INFINITELY CLIPPED DATA 

The values are for the statistics 01(t', T), 02(t', T), and their analogues for various values of the 
test strength (<Y, (3), when the signal is sinusoidal and 200 records are used 

(<Y,{3) (0-05,0'05) (0·1,0·1) (0·2,0·2) (0·3,0·3) (0·4,0·4) 

/-,2 0·0222 0·0170 0·0109 0·0067 0·0032 
V2 0·0346 0·0261 0·0165 0·0095 0·0047 

/-,1 0·0315 0·0240 0·0154 0·0094 0·0045 
VI 0-0472 0·0360 0·0230 0·0135 0·0067 

Therefore equations (48) and (49) become 

C(ct)(O' 6751-2·254:3 VI)t-O· 6366 nVI ~ c(ct)(O· 6751-2·2543 V2)t-0· 6366{n(2n-l)}'v2 

{O· 6751+(0·1238 n -2· 2543)VI}* {O' 6751+(0· 2051 n -2· 2956)V2}t 

= c(I-,8), (67) 

together with equations (39) and (40). Values of iLl, iL2, vI, and V2, for n = 100 
and various values of (ct, ,8), are given in Table 4. In this case the lOBS in efficiency 
due to quantizing the data is approximately 50%. Since infinite clipping is the most 
extreme form of quantization, this gives us a rough upper bound for the efficiency 
loss due to quantization. 

VI. PARTIAL QUANTIZATION 

In Section III it was mentioned that the statistics QI(t',T) and Q2(t',T) could 
be generalized to the case when each of the factors in the product XiX j is quantized 
differently, and the generalization of QI(t',T) is given by equation (6a). This gives 
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rise to no mathematical difficulties, and it is easily shown that all the results of 
Section V remain valid, if equations (42), (43), and (46) are replaced by 

f'(t'+T 
U 2 = tT-2 Jt' {E[gl(S(t)+N(t))]E[gl(S(u)+N(u))] 

X cov[g2(S(t)+N(t)); g2(S(u)+N(u))]+E[g2(S(t)+N(t))] 

X E[g2(S(u)+N(u))] cov[gl(S(t)+N(t)); gl(S(u)+N(u))]} dtdu, 
(42a) 

f
'(t'+T 

V2 = T-2 Jt' cov[gl(S(t)+N(t)); gl(S(u)+N(u))] 

X cov[g2(S(t)+N(t)); g2(S(u)+N(u))] dtdu, (43a) 

and 
(t'+T 

Mr = T-1 Jt' E[gl(Ur(t)+N(t))]E[g2(Ur(t)+N(t))] dt, r = 1,2. (46a) 

A special case of the above situation arises when gl(X) = x, in which case the 
above equations become 

f
' (t'+T 

U2 = t T - 2 Jt' {S(t) S(u) cov[g(S(t)+N(t)); g(S(u)+N(u))] 

+R(t-u) E[g(S(t)+N(t})] E[g(S(u)+N(u))]} dtdu, (42b) 

f
'(t'+T 

V2 = T-2 J t' R(t-u) cov[g(S(t)+N(t)); g(S(u)+N(u))] dtdu, (43b) 

and 

It'+T 
Mr = T-1 Ur(t)E[g(Ur(t)+N(t))] dt, 

t' 
r = 1,2. (46b) 

Let us consider the case when the data are "partially quantized" (that is, gl(X) = x) 
and the second factor in the product XiXj is infinitely clipped, or g2(X) = sgnx. 
Then proceeding as in Section V, and making the same assumptions concerning the 
magnitude of the signal compared with the standard deviation of the Gaussian 
noise, equations (42b), (43b), and (46b) become 

f
'(t'+T 

U 2 = (1/7rT2) J t' S(t) S(u)[arcsin{p(t-u)}+ p(t-u)] dtdu, (68) 

2 f'(t'+T{ ( 2S(t)S( ) 
V2 = 7rT2 J t' R(t-u) arcsin{p(t-u)}- u 

_ (S2(t)+S2(U)) p(t-u) -2S(t) S(U))} dtdu 
2 2 ' a {1-p (t-u)}t 

(69) 

and 

M = (2/7r)t ft'+T r __ 2 
aT t' Ur(t) dt, r = 1,2. (70) 
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Now putting R(t) = a2 exp( -t2jT2) and U r(t) = B r sin{27T(t-t')jT}, we find 

Mr = 0·3989B~ja = 0·7978 aVr , 

V~ = (0·6396-1·6256vr)a2, U~ = 0·0947 a2vr , r = 1,2, 

and equations (48) and (49) give 
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c(a)(0·6396-1·6256vd-0·7978nvI 

{O· 6396+(0· 1894n -1'6256)VI}* 

c(a)(O' 6396-1·6256 V2)t-0· 7978{n(2n-1)}tv2 

[0· 6396+{0·0631(4n-1)-1· 6256}V2]* 

= c(l-fJ) , (71) 

together with equations (39) and (40)_ Values of VI and V2 for n = 100 and various 
values of (a, fl) are given in Table 5. These may be compared with the values in 
Table 4. Note that the loss in efficiency in this case is approximately 17%, whereas 
when both factors were infinitely clipped the loss was 50%. 

TABLE 5 

VALUES OF SIGNAL-TO-NOISE RATIOS FOR PARTIALLY INFINITELY CLIPPED DATA 

The values are for the statistics 0 1 (1', T) and 02(t', T) for various values of the test strength (ct, (3), 
when the signal is sinusoidal and 200 records are used 

(ct,{3) I (0,05,0,05) 

VI 0·0393 
V2 0·0279 

(0·1,0·1) 

0·0284 
0·0210 

(0'2,0·2) 

0·0186 
0·0132 
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APPENDIX 

In the case when the noise is Gaussian it may be shown, using the maximum 
likelihood method, that the optimum statistic for testing HI is of the form 

1 It'+T 2n 
O(t', T) = 2 T H(t-t') ~ Xi(t-Ti) dt, 

n t' (=1 

where H(t) depends upon S*(t) and R(t). However, O(t',T) suffers from the fact that 
usually H(t) is not known beforehand. Consequently we are concerned exclusively 
with statistics that are functions of the observations only. 
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