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The application of unitarity to multiparticle production processes is studied 
and relationships between production and scattering amplitudes are derived. 

I. INTRODUCTION 

In Part I of this work (Cook 1967) the possible structures of many-particle 
partial wave amplitudes were reviewed. In the present paper, the application of 
unitary properties of the scattering matrix is investigated to ascertain how much 
information is provided by the principle of unitarity. From standard tests such as 
those of Blatt and Weisskopf (1952) as applied by Kibble (1960), the unitary condition 
may be written 

sts = I, 

from which one gets 

(2i)-1(Aft -A;t) = ~ J dOn A;n Ant , (1) 

where Aft = <fITli) is the transition amplitude between states of i and f particles 
respectively, T = (2i)-1(I-S) is the transition matrix, where S is the scattering 
matrix, and dOn is the volume element of all degrees of freedom in intermediate 
states of n particles. 

The theorem of reciprocity states that 

Tft = T_t- f · (2) 

Only cases where the interacting particles have no spin are dealt with, and then 
Afi is simply a scalar complex number and both sides of equation (1) are real. 

II. INTEGRATION OVER INTERMEDIATE STATES 

If the partial wave expansion of the general vertex describing transitions 
from a state with i particles to a state with f particles were known, it would prove 
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possible to carry out the integrations on the right-hand side of equation (1) and so 
obtain algebraic relationships between the partial wave amplitudes for production 
and scattering. As in Part I, we write 

Aft = (27T)-! ~ (2L+I) ¢;f(LM', !!') af,(L, W)Dt-'M(Wft)¢;I(LM,!!), (3) 
L 

where ¢;f' ¢;I are multiparticle states of orbital angular momentum Land z component 
M, for f and i particles respectively, Df:r'M(Wn ) is the rotation group operator, 
Af! is the partial wave amplitude, and !!',!! are the additional degrees of freedom 
required to specify final and initial configurations respectively. 

The integrated product in (1) is evaluated as follows. After elimination of 
the kinematical constraints we obtain 

f d!!nA;nAnt = f d!!~ ~ ~ ¢;;(L'M';!!)a;n(L'; W) x¢;n(L'M";!!") 
L'Ln 

Dk;'M,,(Wfn)Df:r'M(Wnl)¢;n(LM; !!n)ani(L; W) x¢;!(LM;!!). (4) 

The phase space factors J n incorporated into the ¢;n and d!!" n will cancel 
and, following from the orthogonality of the ¢;n, 

f d!!~¢;n(L'M'; !!n) ¢;n(LM; !!") = 8(L',L) 8(M'M) , 

as well as from the addition theorem for the rotation group operators (Edmunds 
1957), namely, 

~ Df:r'M"(Wfn ) Df:r"M(Wni ) = Df:r'M(Wfi) ' 
M n 

one obtains 

f d!!nA;nAn; = ~ ¢;f(LM';!!')afn(L, W)ani(L, W)Df:r'M(Wft ) x¢;;(LM; !!). (5) 
LM'M 

Now we select coordinates in initial and final states such that the z axis lies in a 
plane perpendicular to L in each case; hence M' = M = o. The rotation group 
operators obey the property (Rose 1957) 

f dwDfJ,M,,(w) Dfj,M.'(W) = 2:::I8(Ml>M2)8(M~,M~)8(Ll>L2), (6) 

while it is assumed that ¢;n(LO;!!) is a real function. Using these rules, we can 
project out the M = M' = 0 states in (5), and the left-hand side of (1), to obtain 

(2i)-1{afi (L, W)-a;!(L, W)} = ~ a;n(L, W)ani(L, W). (7) 
n 

Any scalar amplitude may be written 

afi = Pti exp i 8fl , 

and substituting this form into (7), we obtain 

1m afi{L, W) = ~ Pfn(L, W) Pnl(L, W) exp[i{8nl(L, W) -8fn(L, W)}J . (8) 
It 
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The left-hand side of (8) is a real number, and the right-hand side must therefore 
satisfy 

~ p,,,p,,,sin(S,,,-S,,,) = 0, (9) 

" 
where the (L, W) have been dropped for convenience. 

One simple way to satisfy the stringent condition (9) is to introduce an equiphase 
principle. We assume that 

Sf" = SIll for all (j, n, i) , (10) 

and explore the consequences. 

The validity of the equiphase principle depends upon the dynamics of the 
intermediate processes. It is rigorously correct in the Breit-Wigner (1936) single-level 
approximation, where the branching ratios become the partial widths of the resonant 
state. If one assumes that resonant amplitudes are additive (Feshbach, Porter, and 
Weisskopf 1954), and that all phase shifts can be explained as the contribution from 
distant levels, it is approximately true if the partial widths for particular processes 
are roughly equal. Using the multilevel formalism of Reich and Moore (1958) it is 
apparently approximately true if the level separations are much greater than their 
widths. The exact principle has also been applied to photoproduction of pions in 
relation to scattering (Bethe and de Hoffman 1955). There exists no proof of the 
principle or the general conditions under which it holds, although Hamilton (1959) 
relates a proof of its validity near thresholds. 

III. PARTIAL WAVE .AMPLITUDES IN THE EQUlPHASE AsSUMPTION 

If Pb is regarded as an n Xn matrix, where up to n initial, final, or intermediate 
particles are kinematically possible, then in the equiphase assumption, equation (8) 
states 

p.p = psinS. 

The partial wave projections from the T matrix elements can be written 

T = pexpiS. 

Since p is a real symmetric matrix, it follows from (11) that 

p" = (sinS)"-lp = (sinS)p"-l. 

When the determinant of both sides of (11) is taken, one finds 

(detp)2 = (sinS)"detp, 

that is, det p equaJs either 0 or (sin s)n . 

The second result corresponds to the trivial solution 

p = (sinS)J, 

(11) 

(12) 

but for the first solution, the physically interesting one, p is a singular matrix. 
Its characteristic equation 

detlp-AII = 0, 

has n-l zero roots with one root equal to sinS. Therefore p is of unit rank and 
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all principal minors of order greater than unity vanish. It follows from the expansion 
of the characteristic equation and the Cayley-Hamilton theorem (Mirsky 1955) that 

(-sinS)n+(-sinS)n-1tracep = 0, 

so that 

trace p = sin S , trace T = sinS expiS, and detT=O. 

Thus p and T possess no inverse; on the other hand, the matrix 

S = 1-2ipexpiS 
fulfils the conditions 

stS =1, 

detS = exp2iS, 

detSdetSt = 1, 

st = S-l. 

p also has the curious property that 

(trace p)n = trace pn. 

IV. BRANCHING RATIOS 

(13) 

The condition that every minor of p of order greater than unity should vanish 
leads to the condition that all 2 X 2 minors should vanish. Hence 

P"PIc/ = PI/Pic!· 

For example 

P~3 = P22 Pa3 • 

We define branching ratios rfl by 

and from (13) we find 

r" = r Pltfsin S , 

r=~ru· 
i 

(14) 

(15) 

(16) 

Also, equation (14) relates all off-diagonal elements to diagonal ones by the relation 

r 't = ±(rffru)l. (17) 

Since r'l appears in total cross sections as a factor of proportionality, we choose 
the positive roots of (17). The matrix 

BII = r,IJT = Pit/sinS (18a) 

satisfies B2=B, (18b) 

traceB = 1, (18c) 

and detB = O. (18d) 
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V. CROSS SECTIONS AND PHASE SHIFrS 

The total cross section for a particular reaction is defined by 

a/!(W,O) = I dn/ IAnI2 • (19) 

This expression can be evaluated by substituting (3) into (19) to obtain 

a/!(W, 0) = 417 ~ (2L+l)pML,W) lif!lLO;O)J2. 
L 

(20) 

With the equiphase assumption we get: 

a/l(W,O) = 4m 2: (2L+l)~~~'!~ sin23(L,W) 1if!!(LO;0)12, 
L 

= 41T 2: (2L+l) rff(L;..~~r;:,\L, W) sin23(L, W) 1if!!(LO; 0)1 2 • (21) 
L 

For a two-particle initial state 

if!2(LO; 0) = Jzi, (22) 

where J 2 is the phase space factor for the state. The inelastic cross sections obtained 
from a two-particle state are found by substituting (22) into (21) to obtain 

a/2 (W) = (41TJJ2) 2: (2L+l) rff(L~~~\;~~L, W) sin23(L, W). (23) 
L 

Now the scattering amplitude is usually represented in terms of a complex phase 
shift (a+i,8) such that in each eigenstate of L 

an(L, W) = sin(a+i,8) expi(a+i,8). 

By equating (24) to the polar form, one finds: 

P22 = H (1 +exp( -4,8) - 2 cos a exp( - 2,8)}i 

and 3 = tan-1{(1-exp( -2,8) cos2a)Jexp( -,8) sin2a}. 

The inverse transformations are 

and 

a = ttan-1{(2p22 cos 3)J(1-2p22 sin3)} 

,8 = -i-ln{1+4p22(p22-sin3)}. 

The absorption coefficient 

'Y}(L, W) = exp{ -2,8(L, W)} 

is such that in each eigenstate 

P22(sin 3-P22) = t{1-exp( -4,8)}, 

that is, 
(F22Jr) (l-r22W) sin23 = i-(1-'Y}2). 

(24) 

} (25) 

} (26) 
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The total production cross section from an initial state of two particles becomes 

n n 
O"prod,2(W) = ~ O"f2(W) = (47r/J2) ~ ~ (2L+1)P72 (L,W) 

f~3 f~3 L 

n 
= (47r/J2) ~ ~ (2L+1)P22(L,W){P33(L,W)+P44(L,W) + ... } 

f~3 L 

= (47r/J2) ~ (2L+1)~(t;;)(1- ~(t;;)sin2S(L,W)) 

= (7r/J2) ~ (2L+1){1-7]2(L, W)}. (27) 
L 

For single-level approximations, one may put 

cotS = 2(Er -E)/T, 

where Er is the energy at resonance and E the total energy of the initial particles. 
This equation yields the Breit-Wigner (19) form in (23) for the partial cross sections. 

VI. A SIMPLE COUPLING SCHEME 

In the matrix B of the branching ratios, given by equation (18a), the diagonal 
elements are unrelated. The reciprocity theorem (2) leads to the result 

Pfl = Plt· 

If we assume that this assumption may be generalized in such a way that 

Pfl = Pf-r,Hr = Pf+r,I-r, li-rl,lf-rl ;> 2, (28) 

the diagonal elements become related. The consequence of the postulate (28) is 
that the total cross sections (21) integrated over the initial configuration become 
invariant under the complex Lorentz transformations that change a particle from an 
initial state incoming to a final state outgoing configuration. That is, if 

O"fj(W) = J dOjO"fl(W, 0) 

= 47r ~ (2L+1)P7i(L,W), 
L 

then O"fi(W) = O"f+r, H(W), (29) 

The diagonal elements of B become related by 

g = T33/T 22 = T44/T 33 = TIl/TI-l,I-l' (30) 

in which case 

B = T22( 1 9 ... ) 
T gg2 ... ' 

trace B = T22 1_g2(n-l) 
T = 1, (31) 

and Pfl = (g)I+!-4 P22 . (32) 
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In this way all production amplitudes are related to scattering and the entire 
set of n2 reactions is specified by two parameters such as (P22'0) or (r22,0) per 
eigenstate of L. 

Using the above theory, similar results are derived for different types of 
(2 -+ 2) or (i -+ f) reactions. In these cases we simply subdivide r22 into subsets 

r 22 = r22(a)+r22(b) + .. . 
r fl = rfl(a)+rfj(b) + .. . 

to obtain branching ratios for reactions (a), (b), ... respectively. 
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