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Summary 

The semiclassical model of direct reactions is reviewed and its predictions are 
presented for a reaction that exhibits the phenomenon of backward peaking, 
following the work of Pearson. The curve a(1800) against energy is fitted quite 
closely and the shape of the curve has a simple explanation in terms of the bound 
state radial wave functions. 

To check the validity of the model the corresponding distorted wave Born 
approximation (DWBA) calculations are carried out; little agreement is found. 
The semiclassical model severely overestimates the spatial localization in the exact 
matrix element, and therefore gives cross sections that have a much faster energy 
variation than the DWBA cross sections. The DWBA calculations cannot explain 
the experimental results on backward peaking and it is concluded that the agreement 
between the semiclassical model and experiment is fortuitous. 

1. INTRODUCTION 

The semiclassical model was first used by Butler (1957) and Butler, Austern, 
and Pearson (1958) to investigate the physical reasons for the well· known "Bessel 
function" shape of angular distributions in direct reactions. The model considers 
the incident particle to be described by a ray (or WKB wave function) that is, in 
general, refracted and absorbed by the nuclear potential. The reaction occurs at 
some well-defined point in the nucleus and the emitted particle is described by 
another ray having different direction, wave number, and absorption coefficient 
from the first. Simple models of the bound state wave functions involved in the 
reaction usually impose strong restrictions on the angular momentum transfer L 
(often L is limited to a single value) and in the semiclassical model this limitation is 
assumed to apply locally, at the point of scattering. For a particular scattering angle, 
the angular momentum condition defines the regions of the nucleus that can con
tribute to the reaction. 
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In the original papers, refraction and absorption of the rays are neglected so 
that the initial and final rays follow straight lines (i.e. the wave functions are plane 
waves exp(iki.r) and exp(ikf.r)) and the angular momentum condition is 

IQxrl=L, (1) 

where Q = ki-kf is the momentum transfer. Equation (1) shows that the reaction 
is confined to the surface of a cylinder, radius LjQ, with axis parallel to Q, and the 
oscillatory shape of the angular distribution may be explained in terms of interference 
between rays arising from different parts of this cylinder. Small cross sections at 
forward angles occur because the cylinder for these angles often does not intersect 
the nucleus and there are therefore no regions in which the reaction can occur with 
the correct angular momentum transfer . 
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Fig. I.-Semiclassical scattering processes. 

Butler gave the semiclassical model some justification by showing that the 
angular integral in the (plane wave) matrix element, 

Sft = f exp(iQ.r)FL(r)PL(cos8) dr, (2) 

may be plausibly evaluated by the method of stationary phase. The region of 
stationary phase is found to coincide with the cylinder defined by equation (1), so 
that it seems reasonable to evaluate the matrix element by integrating over that 
cylinder. The model may thus be viewed as an approximate way of evaluating the 
Born approximation matrix element by integrating over the surface defined by the 
angular momentum condition, rather than over all space. 

II. MODEL FOR DISTORTED WAVES 

Pearson (1962,1963) has extended the model to cover distorted wave calculations 
and has applied it to certain reactions that show the phenomenon of backward 
peaking. Although angular distributions have not been calculated, the model is able 
to fit the rapid energy variation of the backward cross section, which is an important 
feature of these reactions. 
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When refraction and absorption are included the ray diagrams are as shown 
in Figure 1 (we assume a square well for the nuclear potential and consider only 
scattering in the backward direction), and the angular momentum condition is 

I Q* X rl = L, (3) 

with Q* = Ki-Kf . It is found that equation (3) confines the reaction to an area on 
the surface of the nucleus facing the incident beam, and to a small interior region 
on the far side of the nucleus which coincides with the optical model focus noted by 
McCarthy (1959). In the evaluation of the semiclassical matrix element the contribu
tions from these two regions are separated, and we shall refer to them as the "surface 
term" and "focal term" respectively. 
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Fig. 2.-Backward cross section a(1800) against ",-particle energy (laboratory 
system) fo1' the reaction 12C("" p)15N: 0 experimental values; -- semi

classical model; --- DWBA calculations. 

If the optical model wave functions Plt)(r), 1['t/(r) appearing in the distorted 

wave matrix element are replaced by semiclassical wave functions of the form 

1[' (r) = ~ Aj(r) exp{iSj(r)} , 
k j 

(4) 

it is again possible to justify the model by the stationary phase argument and so 
maintain the view that the semiclassical model is simply an approximation to the 
distorted wave Born approximation (DWBA) matrix element. (The sum in equation 
(4) is a sum over rays passing through the point r, and the amplitude and phase are 

Aj(r) oc exp ( - s: r dBJ) , 
a 

Sj(r) = Sj(ro)+ s: /i--l{2m(E- V)}t dBj, 
o 

where V is the real part of the optical potential and r is simply related to the 
imaginary part.) 

Figure 2 shows the predictions of the semiclassical model for the curve a(1800) 
against energy in the reaction 12C(a,p)15N (Yamazaki, Kondo, and Yamabe 1963), 
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which is assumed to proceed by the a-particle knocking out a proton from a Ip state 
and being itself captured into a (cluster model) 38 state. The theory is fitted to 
experiment at 17·3 Me V and the model is able to reproduce the experimental results 
quite closely. Similar fits were obtained for the two other reactions considered by 
Pearson (19F(p, a) ISO and 13C(p, n)13N). 

The features of Figure 2 may be explained by examining Figure 3, which 
shows the bound state radial wave functions for the a-particle and the proton, together 
with the positions and widths of the semiclassical focal spot at various energies. 
At 16 MeV the focus is at a point where the bound state wave functions have a 
large overlap, so that the focal term is large and the cross section has a maximum. 
At IS MeV the cross section has a minimum because the focus falls on a zero of the 
a-particle wave function, severely reducing the focal contribution. Above 20 MeV 
the focus is again in a region of large overlap, and a broad maximum is seen as a 
result. At energies where the focal term is small the surface term will be dominant 
and the experimental angular distributions at these energies often have the oscillatory 
"surface reaction" shape. 
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Fig. 3.-Bound state wave functions and focal positions for the reaction 
120(0<, p)15N. 

The explanation of the energy variation of the backward cross section in terms 
of the bound state wave functions and a small moving focal spot leads to the 
interesting idea that careful measurements of a(IS00) against energy might be used 
to obtain information about bound state wave functions when these are not well 
known. In particular the positions of zeros could be determined accurately and 
from these the depth of the bound state potential could be found. 

III. THE DWBA CALCULATIONS 

To check the validity of the semiclassical model, a general purpose DWBA 
code was written for an IBM 7040 computer. The DWBA calculations were carried 
out using exactly the same parameters as those used in the semiclassical model 
(Table 1); the results for 12C(a, p)15N, which are typical of those obtained for the 
three reactions, are shown in Figure 2. There is no agreement whatsoever between 
the semiclassical and DWBA curves. 
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The positions and widths of the focus in the full optical model lX-particle wave 
function are plotted in Figure 3 (the proton focus is almost stationary at 3·7 fm and 
may be disregarded) and it is easily seen why the two calculations disagree. Although 
the peak positions of the semiclassical and quantum mechanical foci are similar, 
the quantum mechanical focus is about an order of magnitude wider than that 
obtained in the semiclassical model. Instead of a small "bright spot" tracing out 
the bound state wave functions, there is a very large bright region, and so much 
averaging occurs within the region that all details of the bound state wave functions 
are lost. The a(1800)--energy curve is quite devoid of structure. 

A series of calculations was carried out to see if the DWBA theory was able 
in any way to reproduce the experimental results for backward peaking. (The code 
calculates angular distributions, permitting a more detailed comparison with 
experiment than is possible with the semiclassical model.) Angular distributions as 
a function of energy were calculated both with Pearson's parameters and with the 
best parameter values currently available, namely, those of Rosen et al. (1965) for 
nucleons and those of McFadden and Satchler (1966) for lX-particles. A peculiar 
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TABLE 1 

OPTICAL POTENTIALS USED IN SEMICLASSICAL AND DWBA CALCULATIONS 

All potential wells square and of radius 3·6 fm 

v 

45 

49-n 
45 

Paramet~r Values (MeV) 
W E~·m.(= 0·75 E}:b -4'96) 

12 

6+0'5n 
8·5 

7+n 
>11 

feature of the measured angular distributions is the rapid change that can occur (within 
0·2 MeV in one case) from forward to backward peaking, or vice versa. In contrast 
to this the theoretical distributions changed slowly with energy and it was always 
possible to recognize gradual variation of the one basic shape throughout the whole 
energy range. The DWBA calculation could not reproduce the features of the angular 
distributions even in small energy regions, except for 13C(p, n)13N between 5 and 
6 MeV where the theoretical distributions did peak in the backward direction, giving 
qualitative agreement with experiment. One must conclude from these calculations 
that the DWBA theory can sometimes give backward peaked angular distributions, 
as suggested by Kromminga and McCarthy (1961), but it is quite incapable of giving 
a detailed fit to experiment, particularly in the matter of rapid energy variation. 

Since the semiclassical model is nothing more than an approximation to the 
DWBA matrix element, the results of the DWBA calculations must take precedence 
over those obtained with the simplified model, and any agreement between the latter 
and experiment must be regarded as fortuitous. The error of the semiclassical model 
lies in considering the incident or emitted particle to be described by a single ray and 
thinking of the reaction as occuring at a point. The particles are allowed, in effect, 
to have well-defined positions and momenta, in complete disregard for the require-
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ments of the uncertainty principle, and the exaggerated spatial localization to a 
focal region about 0·1 fm wide follows automatically. 

If semiclassical wave functions (equation (4)) are to be used correctly to evaluate 
the probability of finding a particle in a region, the probability must be summed 
over the bundle of rays within the region and one must not try to be specific about 
which particular ray the particle is travelling along. This point has been made by 
Eisberg, McCarthy, and Spurrier (1959) in connection with semiclassical calculations 
of transmission coefficients. Thus the evaluation of the focal contribution to the 
DWBA matrix element using semiclassical wave functions would require two separate 
sums or integrations over rays: over those entering the focus, to find the probability 
of a particle reaching the area, and over those leaving the focus, to find the probability 
that a particle starting from there will emerge in the backward direction. This is 
just a complicated way of evaluating lJI~t)(r) and lJIi:":,)(r) at the focus. The total 

wave functions so obtained would then be multiplied by the bound state wave 
functions and interaction potential (the FL(r)PL(cos8) in equation (2)) and the 
result integrated over the focal region to obtain the focal term. If the calculation 
were made in this way the focal region would be 3 or 4 fm wide (see the ray diagrams 
in McCarthy 1959) and the structure of the bound state wave function would be 
quite lost in the final result. There is, of course, no advantage in following such a 
procedure, and it might well turn out to be more difficult than exact evaluation of 
the quantum mechanical matrix element. 

The semiclassical model has proved useful in qualitative discussions of angular 
distribution shapes. The results presented in this paper, however, show that it should 
not be expected to give detailed quantitative agreement either with the exact quantum 
mechanical calculation or (therefore) with experiment. 
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