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Summary 

The angular velocity distribution in rotating massive stars with uniform 
composition and opacity due to electron scattering is calculated on the assumption 
that meridional circulation is neglible. The effects of radiation pressure are taken 
into account in the determination of the differential rotation and the angular 
velocity is assumed to be independent of latitude. 

1. INTRODUCTION 

The equilibrium configurations of rotating upper main sequence stars have been 
determined previously by Schwarzschild (1947) and Roxburgh (1964) under the 
following assumptions: 

(1) The star has reached a steady state in which there is no meridional 
circulation. 

(2) The star is of uniform composition and all energy generation takes place in 
the convective core. 

(3) In the convective core turbulent viscosity is isotropic and the core therefore 
rotates as a solid body. 

(4) Radiation pressure is negligible. 

A further property of massive stars is that it is possible to describe their structure 
in terms of the mass-composition factor 

Jt = Ji-~M!Mo, 

where M is the mass of the star and Ji-e the molecular weight of stellar material in the 
outer layers of the star. In terms of the factor Jt it is possible to determine when the 
assumption (4) above becomes invalid (Van der Borght and Meggitt 1963). For pure 
hydrogen this corresponds to a mass of the order of 40Mo (Jt ,......, 10) while for pure 
helium stars it is of the order of 9M o. 

The effects of radiation pressure are noticed in the increase of central density, 
the decrease in luminosity, and the increase in size of the convective core, and it is 
to be expected that there should be some corresponding change in the angular velocity 
distribution. The aim of this paper is to derive the equations governing the structure 
of a rotating massive star with Jt > 10 and the method used follows closely that of 
Schwarzschild and of Roxburgh in that we consider the case of small rotations treated 
as a perturbation about an equilibrium state in which there is no rotation. 
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II. STRUCTURE EQUATIONS 

Taking radiation pressure into account, the structure equations of Roxburgh 
(1964) must be modified and can be written in the form 

VPlp = -V(])+Q200 , 

V2(]) = 47T~ P , 

P = ~pTlfL+~aT4. 

(I) 

(2) 

(3) 

where Q, 00, ~, a, and ~ denote the angular velocity, the vectorial distance from the 
rotation axis, and the gravitational, radiation, and gas constants respectively.' The 
radiative equations become 

F = -(4ac/3)(T3IKp}VT, 

V.F=O. 

The convective equation becomes 

d(lnP)/d(lnT} = n/(F3-1} , 
where 

n = ,B+(4-3,B}2(y-l}/{,B+12(y-l)(I-,B)} 
and 

r3 = 1+(T1-,B}/(4-3,B} 

(4) 

(5) 

(6) 

are the generalized adiabatic indices (see Ledoux and Walraven 1958), ,B = Pg/P 
is the ratio of gas pressure P g to total pressure P, fL is the molecular weight of stellar 
material, (]) is the gravitational potential, and F is the radiative flux. 

In the present case we assume that the stellar material can be treated as a 
monatomic gas and that consequently we may take the ratio of specific heats y = 513. 
The opacity K for pure electron scattering is given by 

K = O'2004(I+X} , 

where X is the abundance by weight of hydrogen. 

Since the energy generation takes place entirely within the core, the energy 
equation 

L = f pE dv (7) 
volume 

can be detached from the main structure equations and evaluated where necessary 
as a separate quadrature. 

Two other properties of massive stars enable the problem to be dealt with 
more simply and with slightly greater generality. Firstly, it is convenient to eliminate 
the unknown radius by using as variable RT instead of T, and, secondly, in the case 
of uniform composition and electron scattering opacity it is possible to eliminate 
explicit reference to fL so that the results obtained can be applied to all massive stars 
with uniform composition. 
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As in previous work (Schwarzschild 1947; Roxburgh 1964; Roxburgh and 
Strittmatter 1966), we make no attempt to solve the structure equations explicitly 
but look for a solution in the case of small rotations that is a perturbation of an 
equilibrium state with no rotation. This is obtained in terms of the expansion 
parameter 

2 3 A = QcR j'§M, (8) 

where Q c is the angular velocity of the uniformly rotating core. In order to obtain 
a system of equations in variables compatible with those of Van der Borght (1964), 
we make a change of variable and expand as: 

(R4 /k!jM;)p = p = Pu+A(Puj~tu)Pd, 

(R/kejMo)T = t = tu+Atd, 

(47Tr2FrjL) = l = l+A(xl!ji5{3uPu)('§j~)ld' (9) 

(c[>Rj'§M) '= cp = cpu+ACPd, 

{3 = {3u + A{3d , 

where 

x = rjR, i5 = 3lej167TacM~~, and le = Ke/k~L. 

In the above equations L, R, and M are the luminosity, radius, and mass of the star 
respectively and the subscript e is used to denote the value of the associated quantity 
in the surface layers of the star. All other symbols have their usual meanings. We 
eliminate explicit reference to the mass and composition of the star by introducing 
the mass-composition factor 

J( = /k~MjMo (10) 

and use the variable 
a = Q2jQ~ (ll) 

to describe the angular velocity distribution throughout the star. 

III. BASIC MODEL 

Equating terms of first order in the expansions of the preceding section we 
find 

~ tu dpu dcpu 
'§J( {3uPu dx - dx ' 

d2cpu + 2 dcpu _ 47T {3u Pu . 
dx2 X dx - ~J(T' 

(12) 

(13) 
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for the radiative equation 

for the convective equation 

together with 
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dlu -f3uPu. 
-= -02"4' 
dx x tu 

df3u 
dtu 

2 
3 (1-f3u)f3u 
2 (4-3f3u)lu ' 

f3u = I-laM; l~/Pu. 

(14) 

(15) 

(16) 

These are equivalent to the structure equations of Van der Borght (1964) and 
have been solved by him subject to the boundary conditions given in Section IV. 

X 

0·0 
0·1 
0·2 
0·3 
0·4 
0·5 
0·6 
0·7 
0·8 
0·9 

TABLE 1 

VALUES OF Pu. tu. AND /3u FOR A TYPICAL STELLAR MODEL 

..I{ = 10. Xc = 0·3916 

pu tu /3u 

2·3300 X 10-5 4·6920 X 10-15 0·7942 
2·0872 X 10-5 4·5060 X 10-15 0·7981 
1· 3563 x 10-5 3·9975 X 10-15 0·8133 
7·0005 X 10-6 3·3553 X 10-15 -0,8338 
2 -7988 X 10-6 2·4711 X 10-15 0·8679 
8·5605 X 10-7 1· 7563 X 10-15 0·8898 
2·0540 X 10-7 1· 2030 X 10-15 0·8988 
3·7763 X 10-8 7·8101 X 10-16 0·9023 
4·4700 x 10-9 4·8687 xl0-16 0·9033 
1· 7514 x 10-10 2 ·0316 X 10-16 0·9035 

0·99 1·1964 x 10-14 1·8469 X 10-17 0·9035 

The values of Pu, tu, and f3u for a typical model (Jt = lO) are given in Table 1. The 
present work is based on four models with uniform composition and Jt = lO, 20, 
40, and 60. 

IV. PERTURBATION EQUATIONS 

The equations relating to the perturbation variables are obtained as the 
coefficients of A in the expansions of Section II, and following Roxburgh (1964) we 
assume that the solutions in the envelope can be expressed in terms of a series of 
Legendre polynomials up to second order. Expanding all variables in the form 

Qd(X,/L) = Qo(x) +Q2(X)P2(/L) , (17) 

we find that the variables x, /L can be separated and that we can replace the original 
set of partial differential equations by the following two sets of ordinary differential 
equations. 
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Equations (A) 

1 {dPO V _ (_ tu )} de/> 
q;ultf3u xdx +n+l Po - to-f3uf3o V.'?l = -xdxo+iux2, 

dqo 47T (PO - f3otu)-x-d +qo = ---f3u - --to+ - UV· 
x .'?l uIt.'?l f3 u ' 

the radiative equations 

dto q; - V ( - tu PO) 
x dx + .'?llo- n+l 4to-f30f3u -.'?l = 0, 

dio '1 ( 4 V x df3u) x-+to l---+V--- =0, 
dx n+l f3u dx 

xde/>o/dx = qo ; 
the convective equation 

2 4-3f3u tuf30 +o<:otu , 
to = - 3 (l-f3u)f3~ 

where 0<:0 is a constant of integration; and the auxiliary equation 

f30 = l-;-:u(: -4to ) . 

Equations (B) 

__ x~ __ - _ - tu 2 1 {d- V ( - ) } 
q;ultf3u dx + n+l P2 t2- f3uf32 V.'?l = -q2-iux , 

1 
q;ultf3u P2 = -e/>2-iux2, 

dq2 47T (P2 - tu )-
x dx +q2-6e/>2 = .'?lultf3u .'?lt2 +f32 f3u UV; 

the radiative equations 

dt2 q; - V ( tu P2) 
X dx + .'?ll2 - n+l 4t2-f32f3u - Pi, = 0, 

d12 - ( 4 V x df3u) 6.'?l _ X-+l2 l--+V--- --t2 =0, 
dx n+l f3u dx q; 

Xde/>2/dx = q2 ; 

655 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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and the auxiliary equation 
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2 4-3,Su tu's2; 
t2 = - 3" (l-,Su),S~ 

_ 1-'su(P2 -4t2) . 's2 - - f!lt tu 

In these equations we have introduced the quantities 

uv = Pu 2 
tu x , 

v = _~ dpu 
Pudx' 

n+ 1 = d(ln Pu) 
-. 11 .. ,,' 

which are related to the homology invariants of Schwarz schild (1958). 

(31 ) 

(32) 

(33) 

These equations must be solved subject to the boundary conditions of the 
problem and these are found to be identical in every way to the boundary conditions 
given by Roxburgh (1964). 

For a complete solution we must include the energy equation (7), which has so 
far been omitted. This leads to boundary conditions on 10 only, and to obtain this 
condition we note that 

L= f EpdT = f F.dS 
volume surface 

= Lu{l+'\(xlot~/c,8uPu)}surface. 

If we now assume a power-law energy generation within the core of the form 

E = EopT17, 
then 

Lu= f 2 17 
EOpuTu dT 

core 

{Xc _2 2 -15 2 
= !l' Jx~o Pu,Sutu X dx, 

(34) 

(a5) 

where Xc denotes the position of the interface in the unperturbed model, and the 
constant factor !l' depends on the mass, the radius, and the constant EO. Apart from 
this factor the integral in (35) can be determined explicitly for any given stellar model. 

The change in L (to first order) is then given by 

L = L =!l' fXC _2 Q2 t15 ( 2po + 2,80 + 15to) 2 d a 0 pu /"u u t- nJj a t- X X , 
x~ u~ /"u u 

since the terms in P2( cos 0) vanish on integration. Substituting for 'so in the above 
we find finally 

"X 

La = !l' 1~0 P~,Sut~4{2po/f!lt + (23,Su- 8)to}x2 dx. (3fi) 



ANGULAR VELOCITY IN ROTATING STARS 657 

Equating coefficients of ,\ we obtain 

{Xc 
lo Ix~xc = (cf1uPu/xt!)lx~xc Jx~o p~f1ul~4{2po/Bf + (23f1u- 8)to}x2 dx 

ixc 
. _2 2 -15 2 

--;- Pu f1u tu x dx. 
x~o 

(37) 

It should be noted that if, for example, an exponential type of energy generation were 
to be used it would no longer be possible to eliminate the constant.!e. In this case the 
above integration could only be performed for a particular modei, whereas here we have 
derived a result that is applicable to any massive star in which a power-law energy 
generation is assumed. 

There is no boundary condition on 12 at the interface. We note, however, that 
any discontinuity in dl2/dx (which may be reasonably expected from consideration 
of the different modes of energy transport in the core and envelope) may be com
pensated for by a non-zero value of '2 at the interface. This will ensure continuity of 
energy transport across the interface. 

v. NUMERICAL SOLUTIONS 

The equations (A) involving the radial variations cannot be solved until the 
function a is known, and we therefore start by solving the set (B) for the angular 
variations. In the envelope, eliminating f12 through (32) and eliminating a between 
(25) and (26), there remain five linear homogeneous first-order differential equations 
for the five variables P2, t2, rP2, q2, and 12. There are two boundary conditions at the 
surface and hence the envelope solution can be obtained in terms of three parameters, 
which we choose to be P2e, rP2e, and 12e. 

In the core a = 1 and it is possible although lengthy to show that (25) and 
(26) together imply (31). Elimination of f12 then leads to two linear first-order differen
tial equations in q2 and rP2. The boundary conditions at the centre are satisfied by 
taking rP2 = rP2Cx2 and the core solution can be obtained in terms of the parameter 
rP2C. 

The four conditions of continuity at the interface then serve to determine uniquely 
the four parameters rP2C, rP2e, P2e, and '2e. Once a solution has been determined the 
angular velocity distribution a can be found from (26). 

With the introduction of radiation pressure it is obvious that a polytropic 
solution with constant polytropic index in the core is no longer possible. Near the 
surface there are rapid variations in Pu and Iu and we therefore make use of the expan
sions of Van der Borght (1964) in ascending powers of y = I-x. Thus 

(3u = (3e, (38) 

tu = (3e(~:)(l~Y)' (39) 
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and also 

v '"'-'4/y, n+l '"'-'4, 
and 

uv ~ c-1 (3~(§ uIt/4f!.£)3y2. (40) 

Introducing these expansions into (A) and (B) we obtain, on elimination of 
(32 and a, the following set. 

Equations (A') 

dpo . 2 4-3(3e( - )1 1 (l- y )<iY = (§uIt(3eqo-i(§uIt(3e(l-y) a+ ~ Po-4f!.£to y' 

dqo 477 2(§uIt)3 2( _ ._) (l-y)- = qo-~ (3e -- y po-f!.£(4-3(3e)t 
dy C 4f!.£ ' 

dcpo 
(l-y) dy = -qo, r (4]) 

dio 4lo 1 Po '§. 
(l-y)- = ---+-- +-10, 

dy y (3e Y f!.£(3e f!.£ 

dlo l 
(l-y)dy = o· 

Equations (B') 

dp2 _ (4-3(3e .) • f!.£t2 . (l-y)- = P2 ---2 --4(4-3(3,,)- + <§uIt(3e(q2-2CP2) 
dy y(3e y , 

dq2 477 2(§ ./11)3 2( _ .. ) (l-y)- = q2 -6cp2---.f3e - y p-(4-3f3e)t2 
dy f!.£ . .4 c 4f!.£ 

dl2 (§ - 1 (. P2) 1 
(l- y)dy = 7!i l2 - f3e 4t2- 7!i y' 

d12 . . f!.£ 
(l-y)- = l2+6t2-dy (§' 

)dCP2 = -q2. (l-y dy 

J 

(42) 

If we now expand all variables in (B') in ascending powers of y in the form 

V2 = V2e+V21Y + V22y2 + ... , 
then it is possible to obtain expressions for all coefficients in terms of the parameters 
P2e, CP2e, and 72e • No attempt has been made to obtain explicit independent solutionH 
satisfying the boundary conditions. 
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At the centre of the star we look for a series solution in ascending powers of 
x and, eliminating t2 and P2 in (B/), we find the following set of equations in q2 and CP2. 

dq2 + +A. (4'T1'UV 3f3~(S-7f3u)'§ x- q2 '/-'2 
dx f!lt2 32-24f3u-3f3~ 

6) 4'T1'UV f3~(8-7f3u) 2 - 0 +-- x - , 
f!lt2 32 - 24!3u - 3f3~ 

") 

( (43) 

J q2 = x dcp2/dx . 

In the core 

UV = aMo_to_ f3cexp(-4/f3c) 1-f3u x2, 2 -2 ( )4/3 

3 1-f3u I-f3c f3u exp(-4/f3u) 

where the subscript c indicates the central value of the associated variable. Expanding 

we find 

CP2 = CP2Cx2 +CP23X3 +CP24X4 +O(x5) , 

q2 = 2CP2cX2 +O(x3), 

2 2'T1''lipc f3~(8-7f3c) (l+3CP2C)X4+0(x6). 
CP2 = CP2C X - 7f!lt2 t2 32-24f3c-3f3~ 

C 

(44) 

The solution was started at the surface by choosing a set of parameters and 
using the series expansion to give starting values for a fourth-order Runge-Kutta 
integration at x = O· 96. At the interface the final values of CP2 and q2 were used as 
initial values for numerical integration in the core, and hence the continuity of q2 
and CP2 was assured. The final values p~e), t~e) of P2 and t2 were then compared with the 
values p~C), l~C) obtained from substitution of CP2 in (26) with a = 1 and subsequent 
substitution in (31). 

The integration was continued until x = 0·04 at which point an estimate of 
CP2C was obtained by solving (44) for CP2c in terms of CP2(X) and x. This estimate was then 
substituted in the expansion for q2 to give a value q~th) at x = O· 04, which was com
pared with the value qg) obtained as the end point of the numerical integration. 
Putting 

T _ (_(e) p(C»)/ _(e) p-P2-2 P2, 

T t = (t~e) _l~c»)/l~e) , 
and 

Tq = (q~i) _q~th»)/q~i) , 

and regarding 

(Tp,Tq,Tt) = f(CP2e,P2e,l2e), 

where f is some vector "function" of the input parameters, an iterative procedure 
was then used to find the set (CP2e, P2e, 12e) giving 

f(cp2e, P2e, l2e) = (0,0,0) . 
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The resulting angular velocity distributions were calculated for the four stellar 
modelB (1 = 10, 20, 40, and 60) and are given in Table 2_ The surface value of 
angular velocity at the equator is illustrated as a function of 1 in Figure 1. 

TABLB 2 

ANGULAR VELOCITY DISTRIBUTIONS FOR FOUR STELLAlt MODELS 

x 1 = 10 
a = Q2/Q~ for: 

1 = 20 1 = 40 1 = 60 

1-0 0-715 0-799 0-875 0-899 
0-9 0-735 0-822 0-898 0-924 
0-8 0-764 0-854 0-930 0-954 
0-7 0-801 0-900 0-969 0-988 
0-6 0-872 0-959 0-997 0-998 
0-582 1-00 
0-542 1-00 
0-5 0-953 0- (Hll 1-00 1-00 
0-467 [-00 
0-4 0-995 1-00 1-00 1-00 
0-392 1-00 
0-3 1-00 1-00 1-00 1-00 
0-2 1-00 1-00 1-00 1-00 
0-1 1-00 1-00 1-00 1-00 
0-0 1-00 1-00 1-00 1-00 

Having obtained the angular velocity distribution function u, it is then possible 
to obtain the complete solution for the "radial" variations (variables with subscript 0)_ 
The method of solution is similar to that described above for the "angular" variations 
with the exception that in this case it is possible to eliminate the series expansion at 

)-0 

Nu 0·8 

;&l 
q 

b 

0-6 

0-41 I 

2-5)0 20 40 60 

At ~p.; M/M" 

Fig_ l.-Equatorial surface value of a as a function of 1_ 

the surface and to integrate from the centre outwards_ This is brought about by the 
fact that in the expansions so derived the coefficients of powers of y up to the second 
order in both to and Po are independent of the parameter POe and are determined expli-
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citly in terms of the angular velocity distribution near the surface. The parameter 
POe enters the coefficients of only third and higher order powers of y, and it is then 
sufficiently accurate to use the boundary condition POe = 4&lloe as a test of goodness 
of fit of the solution. The variables 4>0 and qo at the surface behave as ky4 and ky3 

respectively, and as the other tests of goodness of fit we can use the boundary 
conditions 4>0 = 0 = qo. 

TABLE 3 

VALUES O~' PERTURBATIONS AT THE SURFACE FOR FIVE STELLAR MODELS 

Jr q,2 q2 xo* £2* 10* 12* 

2·5t 0·0138 -0·0416 0·5408 -0·1868 -0·1768 0·3022 
10 0·0181 -0'0542 0·1517 -0·2564 -0·6599 1·831 
20 0·0197 -0,0592 0·1546 -0·2861 --1·155 2·363 
40 0·0198 -0·0596 0·2427 --0'3116 -1,892 3·906 
60 0·0192 -0·0577 0·2573 --0·3192 -2·485 5·051 

* Note that Xa = (1/f3e)xa and la = lal Jr, where Xd and ld are the corresponding variables 
of Roxburgh and Strittmatter (1966). 

t Equivalent to the R3 model of Roxburgh and Strittmatter. 

The surface values of the perturbations are given in Table 3 together with those 
of Roxburgh and Strittmatter (1966) for the R3 model, which is equivalent to 
..4 = 2·5. (The variable la is related to la of Roxburgh and Strittmatter by 
la = la/..4.) 

VI. DISOUSSION 

The results of the present work can be seen to agree fairly well with those of 
Roxburgh and Strittmatter (1966) for their R3 model, which is essentially a limiting 
case of the present work as f3 --+ 1. The variation of surface angular velocity with the 
mass-composition factor shows that, as may be expected, the more massive the star the 
faster will be its observed rate of rotation. The effects on the observable properties, 
namely luminosity and effective temperature, have not been considered, since their 
determination requires a calculation of the actual temperature and radius of the 
star. The main purpose of the present paper has been to derive results applicable 
to any massive star with energy generation assumed to be of a power-law type. 

It is perhaps of importance to note that the perturbed models so obtained are 
very sensitive to small changes in the equilibrium models. For example, a change of 
O· 01 % in the structure variables of an equilibrium model can cause a change of up to 
10% in the angular velocity at the surface. For this reason, discussion of stability 
of the models obtained will be left until a detailed treatment of the effects of non
radial oscillations has been carried out. 

The effect of varying composition and evolution on the structure will be con
sidered in a later paper in which three- and four-zone equilibrium models will be taken 
as bases for the perturbation analysis. 
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