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Summary 

The surface energies of face·centred and body. centred cubic crystals have 
been calculated on the assumption that the atoms interact with pairwise potentials 
of either Morse or Mie type. The calculations take into account interactions between 
all neighbours and have been carried through for about 50 crystallographically dis
tinct orientations of the surface. No allowance has been made for relaxation of the 
surface atoms. Stereographic contour plots of the surface energy are presented 
for four Morse and six Mie potentials in each structure. It is shown that, for all 
these potentials, a good approximation to the results can be obtained by counting 
only the numbers of nearest and next-nearest neighbour bonds that are broken 
and associating empirically determined energies with each of these. 

1. INTRODUCTION 

In principle, if the atoms in a crystal can be regarded as interacting with a 
particular pairwise potential, then it is possible to calculate the energy involved in 
creating particular surfaces by summing the energies associated with all atomic 
pairs that are split up in this creation. The literature contains many calculations of 
this type, most of which have been limited to a few different surfaces (e.g. Stranski 
and Suhrmann 1947; Benson and Claxton 1964; Drechsler and Liepack 1965) 
and/or to an interatomic potential that has been neglected for all but the nearest 
few shells of neighbours (e.g. Stranski and Suhrmann 1947; Mackenzie, Moore, 
and Nicholas 1962; Drechsler and Liepack 1965). 

The present paper reports calculations of the surface energy for 50-60 crystall
ographically distinct orientations in face-centred (f.c.c.) and body-centred (b.c.c.) 
cubic crystals, using potentials of both Mie (Lennard-Jones) and Morse types, and 
taking account of the interactions of all neighbours. No allowance has been made 
for any relaxation that may occur among the surface atoms to minimize the surface 
energy, but a study of this effect will be reported later. 

II. METHOD OF CALOULATION 

With pairwise interactions, it is convenient to say that each atom is linked 
to each other atom by a "bond" and to associate an energy with each such bond. 
When an infinite crystal is divided into two parts, a number of these bonds will be 
"broken", i.e. will be increased to infinite length, and the energy associated with each 
new surface can be computed as one-half of the increase in energy associated with the 
breaking of these bonds. If ¢>(r) is the chosen interaction potential for two atoms 
separated by a distance r and a particular bond is specified by the interatomic vector 
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U£ of magnitude Ut, then the breaking of this bond will contribute to each surface 
an energy 

E£ = Hcp(oo)-cp(u£)}. (1) 

It is customary to choose the origin of cp so that cp( (0) = 0 and we then have 

(la) 

In the present work, the division is assumed to occur along a mathematical 
plane of a particular orientation specified by the normal vector h of magnitude h, 
and the energy computed is then treated as the surface energy y(h) for this orienta
tion. If n(ui) is the number of bonds with original vector Ui that are broken per unit 
area of surface, then 

y(h) = ~ E£ n(ui) , (2) 

where the summation is over all interatomic vectors within the crystal. Following 
Mackenzie, Moore, and Nicholas (1962), we can write 

n(u£) = h.Ui/ilh 

=0 

ifh.u£ ;?-O, 

if h. U1 ~ 0, } (3) 

where il is the volum~ of crystal per atom. Thus equation (2) can be rewritten as 

y(h) = (l/ilh) ~ Ei h. U£, (4) 

where all terms are calculable for any given interaction potential and the sum covers 
all Ui with positive h. U1. 

(a) Potentials Used 

The interacting potentials used, all having a minimum of -CPo at a distance 
ro, have been either 

(1) of Morse type, that is, 

cp(r) = cpo[{I- expa(l-r/ro)}2-1] , 

where a is the dimensionless Morse constant, or 

(2) of Mie (Lennard-Jones) type, that is, 

cp(r) = cpo{n(ro/r)m-m(ro/r)n}/(m-n) , 

(5) 

(6) 

where m and n (> m) are the exponents of the attractive and repulsive 
parts of the potential. 

As is usual in these calculations, the constants in the potential are adjusted 
in all cases to minimize, for a perfect infinite crystal, the total lattice energy com
puted as a sum of pairwise interactions. This means that for a given a or (m, n) the 
ratio of ro to the lattice parameter is determined by calculations of lattice energy. 
This is discussed in some detail in Drechsler and Nicholas (1967a), where values 
of this ratio are given for a variety of Morse and Mie potentials. 

Figure 1 shows some of the potentials considered, plotted against the positions 
of various neighbours. This figure is drawn exactly for the f.c.c. structure, but the 
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scale added for b.c.c. is still accurate to within 0'5% for the potentials considered 
here, since, if we write r; for the nearest neighbour distance in the perfect crystal, 

Distance r (b.c.c.) 
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Fig. I.-Plots of some Morse potentials (full lines labelled with Morse constants) and some Mie 
potentials (dashed lines with (m,n)). Plots of the (6,10) and (6,14) potentials would lie to the 
right and left of the (6, 12) plot; the (4'5,8) potential is almost coincident with the (5,7) potential, 
being one linewidth to the right for most of its length. The linear scale across the centre of the 
figure has a unit equal to the lattice parameter ex of an f.c.c. crystal and the values of 1'0 (the 
minimum of the interaction potentiu.l) have been chosen so as to minimize the lattice energy of 
such a crystal. The numbers at the bottom of the figure indicate the distances to the first 12 
shells of neighbours in such an f.c.c. crystal and those at the top show the positions of the first 

13 shells in a b.c.c. crystal. 

we find, for example, that 

(r~/rO)f.C.C. 

(-r;/rO)b.C.c. 

1·029 

1·026 

1·025 

1·019 

for a = 3, 

for a = 5, 

for (m, n) = (5,7), 

for (m, n) = (6,14). 

The b.c.c. scale is drawn for a value of this ratio of 1·024. 

(7) 
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The constants cpo and either a or (m, n) can be chosen in two ways. In the first, 
the surface energies are computed for a whole range of values of these constants and 
these are then compared with some experimental data to determine the appropriate 
values for a particular material. This approach has been adopted in Drechsler and 
Nicholas (1967b), where measurements of the equilibrium shape of annealed crystals 
have been used to predict possible values for a or (m, n). Naturally, an approach 
based on equilibrium shapes or any other property dependent only on relative values 
of surface energy can give no information about the scale factor CPo. 

The second approach, which has been adopted in this paper, is to select appro
priate values for the constants on the basis of other data before calculating the 
surface energy. Thus, for Mie potentials the calculations reported are those for the 
commonly used Lennard-Jones (6,12) form of the Mie potential, for the closely 
related (6,10) and (6,14) potentials, and for a few potentials whose significance has 
been suggested elsewhere (Furth 1945; Drechsler and Nicholas 1967b). For Morse 
potentials, Girifalco and Weizer (1959) have calculated values of cpo and a (D and 
cxro in their notation) for a variety of metals using experimental values of sub
limation energy and compressibility. Surface energy calculations have been carried 
through for all values of the constants given by Girifalco and Weizer, and a selection 
is reproduced here. In all these cases, the Morse constant is between 3 and 5. 

(b) Method of Summation 

Equation (4) can be rewritten as 

y(h) = (l/Qh) I: Ej(h.I: Uk), 
1 k 

(8) 

where the sum over k covers all bonds, with positive h. Uk, that have a particular 
magnitude Uj, and the sum over j covers all possible interatomic distances in the 
crystal. Physically, this means first summing (with k) over all bonds linking an atom 
to the atoms in a particular shell of neighbours and then summing (with j) over all 
shells. For later use, it is convenient to rewrite equation (8) as 

where 

y(h) = I: fLj(h) E j , 
1 

fLj(h) = (l/Qh)h.I: Uk 
k 

(9) 

(9a) 

is a "multiplicity factor" for the surface energy term associated with a broken bond 
from the jth shell. 

For Morse potentials, the sums were evaluated directly using 300 shells of 
neighbours, which is sufficient to ensure that the neglected terms, even in the worst 
case of a = 3, have no effect on the eighth significant digit in the energy values. 
This number of shells corresponds to considering all bonds whose length is less than 
17-18 times the distance between nearest neighbours. 

For Mie potentials, the sums were evaluated directly for the first 500 shells of 
neighbours, i.e. for bond lengths up to 22-23 times the interatomic distance. The 
contribution from more distant neighbours was then estimated as an integral and 
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added to the direct sum. For the exponent 6, this integral correction was of the 
order of 10-3 of the direct sum but rapidly became negligible for higher exponents. 
In all cases, the sums including the integral correction may be expected to be accurate 
to at least four digits. 

Some of the calculations were checked by evaluating the sums of type (4) in 
the order adopted by Benson and Claxton (1964), i.e. in the order of increasing size 
of h. Ui. This method is slower than that generally adopted here since it involves 
more frequent evaluation of ¢>(Ui), but it does provide the additional information 
that is essential for calculations in which the surface atoms are allowed to relax. 
It also allows the Mie sums to be transformed into rapidly convergent series for small 
exponents and for orientations where the lattice planes parallel to the surface are 
densely packed, namely (100), (1l0), and (1l1). However, since the convergence of 
the transformed series falls off seriously for surfaces with higher indices, direct 
summation has been preferred in the present work. 

(c) Consideration of Oscillatory Potentials 

Friedel (1962), Harrison (1963, 1964, 1965), Johnson, Hutchinson, and March 
(1964), and Enderby and March (1965) have suggested that the real interatomic 
potential is described better by an oscillatory function rather than by one of either a 
simple Morse or Mie type. Although potentials proposed for solids are in general 
not available in a convenient analytic form, Johnson, Hutchinson, and March pre
scribe for liquid metals a pair potential of the form 

¢>(r) = A(ro(r)3 cos{2k(r+,8)} exp( -exr) , (10) 

where A, ro, k, ,8, and ex are constants. They further specify the values of these 
constants for Li, Na, K, Rb, Cs, AI, and Pb; thus making it formally possible to 
calculate surface energies by use of equations (8) or (9). However, such calculations 
showed that y would always be negative for Li, that x was negative for Na thus making 
all sums divergent, and that the ratio Ymax(ymin would be more than 3 for Rb. Since 
such results appear physically unreasonable, no further calculations were carried 
out with oscillatory potentials. In fact, it would seem unprofitable to pursue such 
calculations further until much better forms for the appropriate interatomic potential 
in the solid are available. 

III. RESULTS 

The results of the calculations are most conveniently displayed as contour plots 
of y within a unit stereographic triangle. A selection of such plots is shown in Figure 2 
for f.c.c. crystals and in Figure 3 for b.c.c. crystals. All results have been normalized 
to unity at (1l1) in Figure 2 and at (1l0) in Figure 3, the necessary normalization 
factors being shown in the tables to the figures. 

Figures 2(j) and 3(j) show the orientations for which calculations were, in 
general, made and these give an indication of the accuracy with which the contours 
can be drawn. In order to define y more clearly near the corners of the triangle, 
subsidiary calculations were carried out for sets of 25 extra orientations within some 
7° of each corner. Such orientations are not marked on Figures 2(j) or 3(j), nor are 
the results used in the calculations described in the next section. 



26 J. F. NICHOLAS 

1·000 

1·000 

Plot Symbol 
y(lll) <po/a.2 

Plot Symbol 
y(lll) 

<po/a.2 (erg/cm2) <po/a.2 

(a) F4·419 (Pb) 7·1447 154·2 (e) (4,5, 8)F 43·294 
(b) F4·265 (Ag) 7·7902 320·1 (f) (4'5,14)F 23·203 
(0) F3·894 (Cu) 10·092 422·0 (g) (5, 7)F 26·861 
(d) F3-680 (Ca) 12-453 83·96 (h) (6, 10)F 8·4533 

(i) (6, 12)F 7·4309 
(j) (6, 14)F 6·8778 

Figs. 2(a)-2(j).-Contour plots of surface energy for f.c.c. crystals using (a)-(d) Morse potentials 
and (e)-(j) Mie potentials. The full contours are drawn at intervals of 0 ·01 in y(h)/y(lll), dashed 
contours at intervals of O' 005, and dotted contours at intervals of O· 0025. Where a maximum 
occurs other than at a corner of the triangle, the value shown represents the highest value found 
in this region. The dots in (j) show the particular orientations for which calculations were made. 
The above table gives for each plot (1) a symbol for the potential (Drechsler and Nicholas 1967b) 
consisting of the value of either a or (m, n) together with F to denote f.c.c. and, for Morse potentials, 
the metal for which this value of a is appropriate (Girifalco and Weizer 1959), (2) a normalization 
factor in which a. is the lattice parameter of the crystal, and (3) for the Morse potentials, the value 

of <po/a.2 given by Girifalco and Weizer (1959). 
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IV. A TWO.TERM APPRoxIMATION 

27 

As Herring (1951) has pointed out, if the surface energy is calculated by the 
broken· bond method for any finite se,t of bonds, a polar plot of the energy will consist 
of portions of spheres through the origin. Since the present calculations involve the 
contributions from some thousands of different bonds, the final plots of energy 
will consist of small portions of so many spheres that the identity of each will be lost. 
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(a) (c) 

1·015 1·06 1·041·021·000 0·990 1·04 1·021·000 

Plot Symbol 
y(110) rPo/ex2 

Plot Symbol 
y(UO) 

rPo/ex2 (erg/cm2) rPo/ex2 

(a) B4·488 (Mo) 4·3620 1304 (e) (4·5, 8)B 26·894 
(b) B4·279 (W) 4·8611 1591 (f) (4·5,14)B 14·155 
(0) B3·951 (Fe) 6·0708 817·1 (g) (5, 7)B 16·722 
(d) B3·530 (Ba) 9·4451 90·41 (h) (6, 10)B 5·2246 

(i) (6, 12)B 4·5602 
(j) (6, 14)B 4·1868 

Figs. 3(a)-3(j).-Contour plots of surface energy for b.c.c. crystals using (a)-(d) Morse potentials 
and (e)-(j) Mie potentials. The full contours are drawn at intervals of 0·01 in y(h)/y(110), dashed 
contours at intervals of 0·005, and dotted contours at intervals of 0·0025. Where a maximum 
occurs other than at a corner of the triangle, the value shown represents the highest value found 
in this region. The dots in (j) show the particular orientations for which calculations were made. 
The above table gives for each plot (1) a symbol for the potential (Drechsler and Nicholas 1967b) 
consisting of the value of either a or (m, n) together with B to denote b.c.c. and, for Morse poten
tials, the metal for which this value of a is appropriate (Girifalco and Weizer 1959), (2) a normali
zation factor in which ex is the lattice parameter of the crystal, and (3) for the Morse potentials, 

the value of rPo/ex2 given by Girifalco and Weizer (1959). 
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However, in practice, it appears that the final plots can usually be approximated, 
within one stereographic triangle, as portions of one sphere for f.c.c. or two spheres 
for b.c.c. crystals. The implications of this are discussed below. 

In broken-bond calculations the first approximation is to assume that only 
nearest neighbour interactions are significant, i.e. that 

00 

cP(r) = -cPo 

o 

for r < ro, 

for r = ro, 

for r > roo 
} (U) 
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In this case, ro is both the spacing between nearest neighbours and the position of 
the minimum interaction energy, while the value of </>0, the energy of the nearest 
neighbour interactions, is irrelevant for calculations of relative energies. This case 
has been discussed in some detail by Mackenzie, Moore, and Nicholas (1962), and 
Figures 4(a) and 4(b) show contour plots of the surface energy for the two structures. 

(a) 

1.2 __ --~ 

1·2 

1·291 
1·155 1·225 

(c) (d) 

8 1·10 

Fig. 4.-Theoretical contour plots of surface energy (1) when only nearest neighbour 
interactions are considered in (a) f.c.c. and (b) b.c.c. crystals and (2) when nearest and 
second-nearest neighbour interactions are considered in (0) f.c.c. crystals with p = 0·5, 
and (d) b.c.c. crystals with p = 1. The dashed lines in the b.c.c. plots show where 

corners occur in the contours. 

The next approximation is to include second-nearest neighbour interactions 
as well, i.e. to use a potential of the form 

00 for r < r1, 

-</>1 for r = r1, 

</>(r) = 0 for r1 < r < r2, (12) 

-P</>l for r = r2, 

0 for r > r2, 
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where rl and r2 are the distances between nearest and second-nearest neighbours 
and p measures the relative strengths of the two interactions. This case is also treated 
by Mackenzie, Moore, and Nicholas (1962),t where it is shown that 

(1) for f.c.c. crystals, the polar plot within the unit triangle for which 
h ~ k ~ l ~ 0 consists of portion of the sphere through the origin 0 with 
diameter from 0 along [2 + p 1 + p p J; and 

(2) for b.c.c. crystals, this plot consists of portions of two spheres through 0 
with diameters from 0 along [111] and [2+p p p], the intersection of the 
spheres being along the zone from (110) to (211), that is, the [III] zone. 

Figures 4(c) and 4(d) show contour plots of y calculated from such potentials 
with p = 0·5 for f.c.c. and p = 1 for b.c.c. crystals. 

A striking feature of the results shown in Figures 2 and 3 is that, although all 
are markedly different from the nearest neighbour plots in Figures 4(a) 01' 4(b), many 
bear a strong similarity to the appropriate plot in Figures 4(c) or 4(d), or to a similar 
plot for a different value of p. Thus, it looks as if a good approximation to the results 
could have been obtained from some treatment involving nearest and second-nearest 
neighbours only. In other words, a good approximation to y(h) should be given by 

(13) 

with E~ and p = E;/E";. appropriately chosen and /Ll(h) and /L2(h) defined as in 
equation (9a). 

This approximation has been investigated by minimizing the sum 

s = ~ {y(h)-y*(h)}2, (14) 

taken over all h in the present set of orientations, by variation in Ei and p. Table 1 
lists the values found for Ei and p for the same potentials that were considered in 
Figures 2 and 3. 

Figure 5 shows plots of the error in the approximation for two Morse and two 
Mie potentials. This figure and the errors listed in the last four columns of Table 1 
indicate the accuracy of the approximation. For the steep Mie potentials with 
m = 6 and Morse potentials with a ;C; 3· 6, the maximum error is of the order of 
5%, but for the shallower potentials with m :s;;; 5 or a < 3·6 the maximum error can 
rise to lO-12%. However, in all cases, this maximum occurs only in very restricted 
regions near one or two corners of the stereographic triangle and the average error 
over the whole triangle is always less than 3%. 

Table 1 also lists values of E1, E2/E1, and, for the simplest planes, the fractional 
contribution to y that arises from the first two terms in equation (9), namely 

As the influence of second neighbours (measured by E 2/E1 ) decreases, this contribu
tion from the first two terms increases and, as would be expected, the errors in the 

t The final paragraph of the Appendix to this paper contains an error that is most easily 
corrected by replacing the definition E2 = pEl by E2 = 2p' El, and then replacing p by p' through
out the rest of the paragraph. 



TABLE 1 

ENERGY RELATIONS FOR POTENTIALS USED IN FIGURES 2 AND 3, TOGETHER WITH PARAMETERS OF TIlE TWO-TERM APPROXIMATIONS 

The last four columns show the percentage error in the approximation at various orientations, the first of these being the largest negative error and 
the last the largest positive error that is found 

Potential 

(m,n) = (4'5, 8) 
(4·5,14) 
(5, 7) 
(6, 10) 
(6, 12) 
(6, 14) 

a = 4·419 (Pb) 
4·265 (Ag) 
3·894 (Cu) 
3·680 (Ca) 

(m,n) = (4·5, 8) 
(4·5,14) 
(5, 7) 
(6, 10) 
(6, 12) 
(6, 14) 

a = 4·488 (Mo) 
4·279 (W) 
3·951 (Fe) 
3·530 (Ba) 

{ILl (h) El + 1L2(h) E2}fy(h) 
(100) (111) (110) 

0·078 0·093 0·092 
0·184 0·189 0·203 
0·134 0·155 0·156 
0·508 0·519 0·542 
0·571 0·578 0·603 
0·610 0·613 0·639 

0·606 0·636 0·649 
0·555 0·590 0·601 
0·402 0·450 0·451 
0·291 0·346 0·339 

(110) (100) (111) 

0·066 0·057 0·080 
0·164 0·1611 0·194 
0·113 0·101 0·135 
0·462 0·474 0·517 
0·525 0·542 0·581 
0·565 0·585 0·619 

0·561 0'566 0·621 
0·493 0·494 0·554 
0·369 0·358 0·425 
0·152 0·119 0·182 

El E2/El p 

Face-centred Cubic Crystals 

0·2687 1·1546 0·5680 
0·4418 0·4336 0·5000 
0·2952 1·0409 0·5662 
0·4700 0·3484 0·3843 
0·4817 0·2862 0·3390 
0·4875 0·2488 0·3083 

0·4443 0·4771 0·4218 
0·4278 0·5452 0·4559 
0·3564 0·8385 0·5493 
0·2731 1·2792 0·6102 

Body-centred Cubic Crystals 

0·1280 3·9056 0·7824 
0·3732 1·1944 0·7656 
0·1671 2·9925 0·8170 
0·4193 1·0353 0·8162 
0·4407 0·9221 0·7860 
0·4529 0·8467 0·7565 

0·3887 1·2243 0·9110 
0·3596 1·3560 0·9217 
0·2813 1·7767 0·9324 
0·04076 11·4476 0·9229 

E· 
1 

4·2326 
2·1013 
2·3306 
0·8543 
0·7794 
0·7400 

0·7092 
0·7508 
0·9091 
1·0724 

4·6707 
2·5185 
2·8765 
0·9460 
0·8470 
0·7950 

0·7598 
0·8346 
1·0195 
1·5509 

Error (%) in Approximation at: 
(100) (Ill) (110) -(531) 

-11·6 -6·6 -0·2 3·8 
-10·3 -5·9 -0,2 3·3 
-10·8 -5·8 0·1 3·7 
-6·3 -3·1 0·4 2·3 
-5,5 -2·7 0·4 2·0 
-5·0 -2·5 0·3 1·8 

-5·3 -2·2 0·8 2·1 
-6·0 -2·5 0·8 2·3 
-7·8 -3·3 0·9 3·0 
-9·1 -3,9 0·9 3·5 

(110) (100) (111) 

-12·4 -2·8 5·8 
-11·1 -2,4 5·2 
-11·6 -2·3 5·8 
-7,0 -0,8 4·2 
-6·2 -0'7 3·7 
-5·7 -0·6 3·4 

-5·9 0·0 4·4 
-6,7 -0·2 4·9 
-8·2 -0,6 5·8 

-10·7 -1·3 7·1 

<:i> 
W 

~ 

~ 

~ 
@ 
o 

E 
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approximation decrease. However, the approximation is still remarkably good even 
when the first two terms account for less than 10% of the total surface energy. 

The accuracy of the approximation has implications for those problems where 
it is desired to calculate energies of particular atomic configurations in a semi
quantitative way. The most common procedure is to take account of nearest neigh
bours only, despite the large errors that are introduced thereby. The present results 
suggest that the inclusion of second neighbours can lead to significantly more reliable 

-2·70 

(a) 

4·89 

Fig. 5.-Contour plots of the percentage error in the two-term approximation for (a), 
(b) f.c.c. and (c), (d) b.c.c. crystals. The heavy contour is the zero error and others are 
drawn at intervals of 1% (full lines) or 0·5% (dashed lines). The symbols for the plots 
as defined for Figures 2 and 3 are 

(a) (6,12)F, 

(c) (6,12)B, 

(b) F3·S94, 

(d) B4·279. 

results, provided the energies associated with the interactions are treated as adjust
able parameters. The differences found here between El and E~ and between E2/El 
and p show that it is profitless to calculate these energies from a given potential 
function. However, when only relative energy values are needed, Table 1 suggests 
that a good estimate should be obtained by taking p between! and t for f.c.c. and 
between i and 1 for b.c.c. crystals. 
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V. DISCUSSION 

The present work has shown how the surface energy will depend on orientation 
if a pairwise potential of a given form operates in an unrelaxed crystal. The calcula
tions are exact within the limits of this assumption and the results in Table 1 show 
that the effects of distant neighbours can be highly significant. However, for potentials 
of the type considered, quite a good approximation can be obtained by counting only 
first and second neighbours and associating empirically determined energies with 
each of these. This may account for the success of various arguments (e.g. Sundquist 
1964) based on only these two groups of neighbours. When the calculations are 
extended to include the effect of surface relaxation, which will allow a reduction 
in the surface energy, the detailed results will change but no qualitative changes 
are to be expected in the orientation dependence of y. 

The most detailed experimental evaluation of a surface energy contour plot is 
that derived for gold by Winterbottom and Gjostein (1966). Normalizing their 
results to make y(111) = 1, they find y(100) = 1·072 and y(110) = 1·047 and the 
contour plot shows a maximum of 1·077 at about (10 1 0) with a minimum at (111). 
The degree of anisotropy Ymax!ymin corresponds best to that given by a Mie potential 
with m = 6 or a Morse potential with a ~ 4. However, none of the pairwise potentials 
considered here predict a maximum close to (100) nor, in consequence, do they predict 
y(100) > y(110). Indeed, as pointed out above, all predict that for f.c.c. crystals 
the maximum lies close to the zone from (210) to (111). Thus, any explanation of a 
maximum elsewhere in the triangle must be based on pair potentials significantly 
different from those used here or on a completely different approach. It may be worth 
noting in passing that the oscillatory potentials for lead and aluminium (Johnson, 
Hutchinson, and March 1964) do predict maxima near to (100) but the degree of 
anisotropy is around 1·35-1·4. 
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