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Summary 

Using integral representations of the· bOtuld state wave functions it is shown 
that, near the so·called Butler pole, DWBA amplitudes of (d, p) and certain (d, n) 
reactions depend only on the asymptotic parts of these wave ftulctions. Furthermore, 
the zero-range approximation for the n-p interaction in the deuteron is exact at 
the pole. As well it is fotuld that for (d, n) stripping to loosely bound levels of heavy 
nuclei the Butler pole disappears in the sense that the amplitude is no longer infinite 
there. 

I. INTRODUCTION 

The amplitude M of a (d,p) or (d, n) reaction, at fixed incident deuteron energy, 
may be regarded as a function of the variable Q2, 

where 

kl and ky are the momenta, in the centre of mass frame, of the incident deuteron 
and the outgoing nucleon y, while mA and mB are the masses of the target nucleus 
A and the residual nucleus B, which consists of A plus a captured nucleon x. 

For (d, p) and (d, n) reactions the amplitude M(Q2) has a singularity at the point 
Q2 = - K;, where 

K; = - 2mxA Bx /n2 , 

and Bx is the binding energy of the captured nucleon. If Coulomb interactions are 
neglected, this singularity is a pole, the Butler pole (Schnitzer 1962), but when 
Coulomb interactions are included this singularity is a branch point. In the case of 
(d,p) reactions the cut is in the phase of the amplitude only and there is a simple 
pole in the modulus. The (d,n) case is somewhat more complicated. 

In both cases the amplitude in a neighbourhood of the singularity, the so-called 
pole term, is of considerable interest. It represents the high partial waves in the 
partial wave expansion of the amplitude. It can therefore be used to aid the compu­
tation of these amplitudes (Bertram and Tassie 1968). 

Another reason for current interest in the pole term is that the residue at the 
pole is proportional to the reduced width of the captured nucleon so that, at least 
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in principle, model independent reduced widths may be obtained from the angular 
distribution of the differential cross section either by extrapolation (Amado 1959) 
or, in the case of sub-Coulomb stripping, by employing the method of Morinigo 
(1967). 

In the distorted wave Born approximation (DWBA) the amplitude for deuteron 
stripping reactions is (see, for example, Glendenning 1963) 

where if}+) and ift) are elastic scattering optical model wave functions of the incoming 
deuteron and the outgoing nucleon respectively, CPd is the internal wave function of 
the deuteron, cpx the bound state wave function of the captured nucleon, and V d 

represents the neutron-proton interaction in the deuteron. The aim of this paper 
is to show that near the pole the amplitude M(Q2) depends only on the asymptotic 
parts of the wave functions and that the zero-range approximation is exact at the 
pole. We shall neglect the spins of the particles involved and choose our units such 
that Ii = l. 

II. (d,p) AND (d,n) REACTIONS 

If we introduce the Fourier transforms F1(Pl) and F2(P2) of the scattered wave 
functions by the relations 

if~+\ r) = f F1(Pl) exp(ipl. r) dpl, (2) 

ift)*(r) = f F2(p2)exp(-ip2. r ) dP2, (3) 

then the amplitude (1) can be written as (Clement 1965) 

M = -tm~~ f F1(Pl)F2(P2) (K~+q~) G1(ql) G2(q2) dpl dp2, (4) 

where 

2 2 2 2 
(mB/mA)(ql +Kx) = (md/m y)(q2+Kd) , (5) 

G1( ql) = f cp;( r) exp(iql' r) dr, (6) 

G2(q2) = fcpd(R)eXP(iq2.R) dR. (7) 

Suppose that the potential V d and the potential V xA, acting between A and the 
captured nucleon, can be expressed as superpositions of exponential or Yukawa 
potentials 

V d(r) = - f: O(oc) exp( -ocr) doc, (8) 
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VXA = (27JKx)r -1 - f: B(oc) r -1 exp( -ocr) doc. (9) 

The use of exponential potentials in one case and Yukawa potentials in the 
other is of no great significance as they can be related by partial integration. The 
first term of V xA represents the Coulomb interaction between x and A with 

if x is a proton 

if x is a neutron. 

The wave function for the internal motion of the deuteron, which is assumed to be 
in a pure s-state, can be expressed as (Martin 1959) 

CPd(R) = (47r)-tNdR-1eXP(-KdR)(I+ f~ p(lX)eXP(-IXR)dlX), (10) 

where p(oc) satisfies the equation 

and N d is a normalization constant. 

The bound state wave function of the captured particle, which is assumed to 
be captured into a state of definite angular momentum, may be written as (Andrews, 
to be published) 

cpx(r) = NL YLM(r)rLexp(-Kxr) L'J) u(lX)exp(-ocr) doc. (ll) 

The constant N L is related to the reduced width (see, for example, Dullemond and 
Schnitzer 1963) and U(IX) satisfies the equation 

The right-hand side does not contribute for 0 ~ oc ~ fL, and the solution can easily 
be seen to be 

U(oc) = uo(oc) (13) 

where 

Uo(oc) - ocL+'l(OC+2Kx)L-'l . 

For all greater values of oc equation (12) can then be solved recursively. 

If we define 

U1(1X) = u(OC)-UO(IX) , 

equation (ll) becomes 

cpx(r) = NL hM(r)rLexP(-Kxr)( roo uO(IX)exp(-ocr) doc + fOO u1(IX)exp(-lXr) dlX). 
Jo II (14) 
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Substituting (14) in (6) and (lO) in (7), we find 

G1(ql) = 87T(2i)L(L+1)!qf YlM(ql)NL( (00 uo(oc) 2 OC+Kx 2 L+2 doc 
Jo {ql+(OC+KX)} 

+ foo Ul(OC) 2 OC+Kx 2 L+2 dOC) , 
'" {ql + (OC+Kx) } 

G2(l) = (47T)t Nd(A + fOO 2 p(oc) 2 dOC) . 
q2+Kd '" q2+(OC+Kd) 

Using (15) and (16) in equation (4), the amplitude M becomes 

-2mnpM = Ml+M2+(mdmA!mymB)(M3+M4). 

Writing 

we have 

(15) 

(16) 

(17a) 

In Section III it is shown that the term Ml is infinite at the point Q2 = -K; for 
7J ~ 1 and that this singularity is an end-point singularity from the lower limit of the 
integration with respect to oc. Since R(Pl,P2) does not explicitly depend on oc, Kd, 

and KX, and since uo(oc) = 0 at oc = 0, the singularity of Ml can only come from the 
vanishing of the term qi+(OC+KX)2 at <X = 0 in the integrand, i.e. the singularity 
arises from qi+K; = 0 or equivalently from q~+K~ = o. 

Comparing equations (17b) and (17d) with (17a) it follows immediately that 
M2 and M4 in general have no singularities at Q2 = -K;. 

The term M3 may be rewritten as 
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When q~ = -K~ the integrands of both terms on the right of (18) behave like 
oc'1-1 as oc ~ O. Therefore, for 7J > 0, the lower limit of the integration with respect 
to oc does not cause any singularities in Ma at Q2 = -K;. 

In the case of 7J = 0, the integration with respect to a in (17c) can be carried 
out explicitly to yield 

Ma = f: p(f3) df3 f R(P1,P2){q~+(f3+Kd)2}-1 dpl dp2. 

The integrand is finite at the point q~ = -K~, and Ma cannot have a singularity at 
Q2 = -K;. Therefore, as Q2 ~ K;, M(Q2) ~ M1(Q2), except when the Coulomb 
parameter 7J of the captured particle is greater than unity. 

The amplitude Ml when expressed in terms of wave functions is 

Ml = f r/A-)·{(mAlmB)r}cP~(r) rfif+\r) dr, (19) 

with 

cPo(r) = NL YLM(r)exp(-KXr)rL L") ocL+'I1(oc+2KX)L-'I1exp(-ocr) doc. (20) 

Thus M 1 is the DWBA amplitude for the stripping reaction when the zero-range 
approximation for the deuteron is made and with the bound state wave function of 
the captured nucleon replaced by its asymptotic part. 

Mter carrying out the integration in (20) we find that for (d, p) reactions (7J = 0) 
the correct asymptotic form of the bound state wave function is 

cPo(r) = NLh2) (iKxr) YLM(r) , 

where h2)(z) is the spherical Hankel function of the first kind, and for (d, n) reactions 
(7J > 0) 

cPo(r) = N Lr-1 W L,'I1(Kxr) Y LM(r) , 

where W L,'I1(Z) is the Whittaker function. 

III. THE TERM M 1 

In this section we shall show that the term M 1 in the amplitude is infinite at 
Q2 = -K;, the singularity arising from the lower limit of the integration with respect 
to oc in equation (17a). 

The scattering wave functions rfif+> and rfit> in (19) can be expanded as Born 
series; the leading terms in these expansions are given as (Mott and Massey 1965) 

where 

and 

rfi~+)(r) = exp( -i7T'Y}l) r(l+i7J1) exp(ik1. r)F{ -i7Jl; 1; i(k1 r - kl. r)}, (21) 

rfi~-)·( r) = exp( -!7TTJ2) r(I+7J2) exp( -ik2. r)F{ -i7J2; 1; i(k2r +k2. r)}, (22) 

for (d, p) reactions 

for (d, n) reactions. 
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The amplitude M 1 is then 

M1 = K ICIJ ao(ex) dex f exp(iQ. r) rL Y~M(r) exp{ -(ex+Kx)r}F{-i7]l; 1; i(k1 r -k1' r)} 

(23) 

All the constant factors that occur in M 1 have been absorbed in the quantity 
K. In order to keep the expressions in the remainder of this section as concise as 
possible, any other constant factors that may appear as the result of our manipula­
tions shall be automatically included in K. 

If we assume that 7]1 and 7]2 contain a small imaginary part i€ (€ > 0), which 
we can put equal to zero after the calculations, we may use the integral representation 
of the hypergeometric functions (Erdelyi 1953) and write 

where 

M1 = K 501 501 S-1-171 (l_s)i171t-1-i172(1_t) i172 dsdt 5000 ao(ex) dex 

X f rL exp{ - (ex+a)r} Y~M(r) exp(iq. r) dr, 

a = kx-i(k1S +k2t) , 

q = Q-k1S +k2t. 

Integration with respect to r yields 

M1 = K 501 501 S-l-i17, (1_S)i17,t-1-i172(I_t) i172ds dt 

L 2 2 -(L+2 100 xq hM(q) 0 ao(ex) (ex+a){q +(ex+a)} )dex. 

(24) 

(25) 

(26) 

(27) 

For large ex the integrand goes as ex-4 and thus the integral converges at the upper 
limit of the ex-integration. Hence, if M1 is to have.a singularity at Q2 = -K;, the 
only way this can happen is when the term {q2+(ex+a)2} in the integrand vanishes 
at Q2 = -K;. From equations (25) and (26) we find that this occurs only when 
ex = s = t = O. Hence we have shown that if M1 has a singularity at Q2 = -K; 
it must arise from the lower limit of the integration with respect to ex. 

In order to show that M1 is in fact infinite at Q2 = -K; we make use of a 
result due to Cejpek (1966) 

A(Q2,f3) = 501s-1-i171(1_d171dS 501 t-1-i172(1_t)i172dt 

X f rL- 1 Y~M(r)exp{i(Q-k1S +k2t). r}exp[ -{f3-i(k1s +k2t)}r] dr 

= K(l+C)i171(1+B)i172 ~ ± (~)t(2L+1)t(L_1,M_m,1,m I LM) X 
(Q2 +f32)L+l l~O m~-l 21+1 21 
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X kf-Z( -kd Y~-z,M-m(kl) Y;m(k2 ) r(L-l+1+i1)1) r(l+1) 

~ r(-i1)l+S) 1 (_1)8C8 
X ~ -----

8~O r(-i1)l) (L-l+s+1) r(l-s+l) r(s+l) (1+C)8 

X LiZ (l+B)-J r(-i1)2+j) r(L-j+ 1 +i1)2) 
J~O r( -i1)2) r(L-l-j+l) r(j+l) 

X 2}!'I( -i1)2+j; -i1)l +s; L-l+s+ 1; H) , (28) 

with 

Comparing this formula with equation (24) it follows immediately that, with (3 = IX+KX, 

(29) 

When Q2 = -K;, a typical term in the integrand of (29) behaves like a'1+i-2 as 
IX --+ O. Therefore, due to the terms with j = 0 in (28), Ml is infinite at Q2 = -K; 
only if 1) ~ 1. 

IV. CONCLUSIONS 

We have shown that the DWBA amplitude M(Q2) for stripping reactions can 
be expressed as a sum of four terms, the first of which M 1(Q2) corresponds to DWBA 
when the zero-range approximation is used for the deuteron, and with the bound 
state wave function of the captured nucleon replaced by its asymptotic part. The 
term M 1 is infinite at Q2 = - K;, this singularity being known as the Butler pole. 
Since the other terms are finite at the Butler pole, M(Q2) --+ Ml(Q2) as Q2 --+ -K;. 

There is, however, one exception. In the case of (d,n) reactions with 1) > 1, 
that is, when the proton is captured into a loosely bound level of a highly charged 
nucleus, Ml is no longer infinite at the point Q2 = -K; and therefore in this case 
M(Q2) does not approach Ml(Q2) as Q2 --+ -K;. 
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