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Summary 
The lowest order field-dependent term in ~he static dielectric constant is 

calculated for an ionic crystal with deformable ions, and is evaluated numerically 
for NaI using a simple shell model. Some terms of higher order are also calculated. 

I. INTRODUCTION 

In general the static dielectric constant of a crystal would be expected to be a 
function of the external electric field E, since the change in dipole moment caused by 
a given change in the field strength would be less at high fields, when the crystal 
already has a large dipole moment, than at low fields. For a centro-symmetrical 
crystal the field-dependent static dielectric constant £8 can be written as a Taylor 
expansion in powers of the field strength as 

(1.1) 

In most situations the field-independent term £0 dominates. 

In a previous paper (Oitmaa 1967a; hereafter referred to as Part I), in which 
references to earlier experimental and theoretical work are given, the lowest order 
contribution to the coefficient £2 was calculated for the alkali halides using a rigid 
ion model. It was found that the field dependence of the dielectric constant is directly 
attributable to the anharmonic terms in the crystal potential energy. The lowest 
order contribution evaluated in Part I was due to a particular quartic anharmonic term. 

We consider a thin rod of dielectric (e.g. Szigeti 1959; this was also implicit in 
Part I) for which the macroscopic and external fields are identical. The static 
dielectric constant is then given by 

£8-£00 == - ,;;(:!) , (1. 2) 
V,T 

where F is the Helmholtz free energy of the crystal of volume V. To obtain the 
dielectric constant it is thus necessary to calculate the free energy of an anharmonic 
crystal in the presence of an external electric field. 

In Part I the free energy was calculated by a straightforward application of 
perturbation theory. In the present paper we use a slightly different formulation of 
perturbation theory, in which the various terms are represented by diagrams (e.g. 
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Cowley 1963; Parry and Turner 1964; Wilcox 1965). Some of the advantages of 
using diagrams are 

(1) they often lead to greater clarity and insight into the structure of the 
perturbation series, 

(2) they provide a systematic way of obtaining all of the terms of a given order, 
and 

(3) it is sometimes possible to sum certain classes of terms to all orders, and 
in this way to obtain physical approximations that cannot be readily obtained 
from a conventional perturbation theory. 

In Section II the Hamiltonian of the model is obtained. This Hamiltonian 
contains higher order dipole moments that do not occur in a rigid ion model but do 
occur when the ions are deformable. In Section III the formalism of the diagrammatic 
perturbation theory to be used is summarized. In Section IV the free energy and 
dielectric constant are obtained, and in Section V the result is evaluated numerically 
for NaI using a simple shell model. Finally, in Section VI some higher order correction 
terms are calculated. 

II. HAMILTONIAN 

In the theory of an anharmonic crystal, and in many-body problems in general, 
it is usually most convenient to express the Hamiltonian and other operators in terms 
of creation and annihilation operators for the elementary excitations. In terms of 
these operators the Hamiltonian of an anharmonic crystal, in the absence of an 
external field, can be written (e.g. Born and Huang 1954; Cowley 1963) 

f where 

2 
H = Ho+yH3+y H4+"" (2.1) 

(2.2) 

(2.3) 

(2.4) 

In these expressions Ho is the harmonic Hamiltonian and H3 and H4 are 
respectively the cubic and quartic anharmonic terms. The parameter y is the usual 
order parameter that indicates the number of factors of ujro by which a particular 
term is smaller than the harmonic term, u being some sort of mean displacement and 
ro the nearest neighbour distance. For convenience the double suffix qj for each 
phonon mode has been replaced by a single suffix A. The operators a~ and a;. are 
respectively the creation and annihilation operators for the phonons of mode A, and 
have the usual properties. The operator A;. is defined by 

A(qj) = a(qj)+a( -qj)* (2.5) 

and is related to the normal coordinate Q(qj) of Part I by 

A(qj) = (2w(qj)jn)'Q(qj) . (2.6) 
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The anharmonic coefficients V(,\1,\2 '\3) and V(,\1,\2,\3 '\4) are related to those of 
Part I by 

V(qdl; qd2; q3ja) = Nl tL'l(ql+q2+qa)(8 (q .) (~ .) (q . »)t 6 ,w 1)1 w 2 J2 w a Ja 

(2.7) 

and 

( h4 )t 
X 16w( qdl) w( qd2) w( qaja) w( q4j4) 

X ([>( qdl; qd2; q3ja; q4j4)' (2.8) 

In the presence of an external electric field E, in the x direction, the Hamiltonian 
of the crystal becomes 

H(E) =H-EM, (2.9) 

where M is the x component of the dipole moment of the crystal. M can be expanded 
as a series in the phonon coordinates AA (Born and Huang 1954) to give 

M=1oAo+y ~ 1('\1'\2)A A1 AA,+i ~ 1(,\1,\2,\3)A A1 AA,AA3 + .... (2.10) 
AlA, A1A,A3 

The suffix 0 refers to that q = 0 optic mode which has displacements in the x direction, 
i.e. the mode (04). The first term in (2.10) contains both the effect ofthe displacements 
of the ions as a whole and the first-order effect of the electronic deformations, while 
the second and third terms are due entirely to electronic deformation. 

III. PERTURBATION FORMALISM 

We consider a general system having a Hamiltonian 

H=Ho+V, (3.1) 

where Ho is the unperturbed Hamiltonian, which will hereafter be taken to be the 
harmonic Hamiltonian (2.2), and V is the sum of all perturbation terms. 

The free energy can then be obtained from the partition function Z according to 

F = _,8-1lnZ, (3.2) 

where 

Z = Tr{exp(-,8H)} (3.3) 

and,8 = IjkT. 

The exponential operator in (3.3) can be expanded in powers of the perturbation 
V (e.g. Parry and Turner 1964) as 

00 (_l)n liJ liJ - -
exp( -,8H) = exp( -,8Ho) ~ -,- dUl . . . dUn T{V(u1) ... V(un)}. 

n=O n. 0 0 
(3.4) 
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In this expansion the V(u) operators are defined by 

V(u) = exp(uHo) V exp( -uHo) , (3.5) 

which is a type of interaction representation, and T is the Dyson ordering operator, 
which orders the V(Ui) operators so that the u/s are in descending order with the 
largest on the left, and so on. For example 

(3.6) 

Using the expansion (3.4) the partition function (3.3) becomes 

( 
00 (-It IfJ IfJ - - ) Z = Zo 1+ ~ --,- dUl. . . dUn <T V(Ul) ... V(un»O , 
n~ ~ 0 0 

(3.7) 

where Zo is the partition function of the unperturbed system and < )0 denotes the 
unperturbed canonical ensemble average, i.e. 

(0)0 = ZolTr{exp(-.8Ho)O}. (3.8) 

In evaluating the thermodynamic average in (3.5) the V(u) operators are first 
written explicitly in terms of the phonon coordinates AA. It is then necessary to find 
the unperturbed average of an ordered product of AA operators. This can be done by 
using Wick's theorem (e.g. Gaudin 1960), which states that the average of an ordered 
product is equal to the sum of the products of all possible "contractions". A con­
traction is the unperturbed expectation value of the ordered product of two operators. 
In the present case the only nonvanishing contractions are of the form 

g(.\, u) = <T AA(U)* AA(O»O 

= nAexp(+ I u IliwA) +(nA+I)exp(- I u I IiWA) , (3.9) 

where nA is the mean occupation number of the mode .\, given by 

nA = {exp(.8liwA-I)}-l. (3.10) 

In addition to being an even function of u, g(.\, u) also satisfies the periodicity 
condition 

g(.\, u+.8) = g(.\, u), -.8 < u < 0, (3.II) 

and so can be expanded in a Fourier series 

00 

g(A, u) = ~ gl(A) exp(21TiluJ.8) . (3.12) 
1=-00 

The Fourier coefficients are given by 

I ffJ g,(A) = 2.8 -l('\' u) exp( -:-:-21TiluJ.8) du 

2WA I 
= .81i w~+w1' 

(3.13) 



DIELECTRIC SATURATION IN IONIC CRYSTALS. II 443 

where 

WI = 27/'ljfHi. (3.14) 

The Fourier coefficient gl(A) is called the "free phonon propagator". 

Returning to the partition function (3.7), the procedure then is to substitute 
for V(u) in terms of the A,t's from (2.3), (2.4), (2.9), and (2.10) and then to take 
all possible contractions ofthe A,t's. If the Fourier expansion (3.12) is then substituted 
for each contraction, the u-integrations in (3.7) can be carried out directly, using the 
result 

(3.15) 

The above procedure can be most conveniently carried out in terms of diagrams. 
We consider the nth term in (3.7). Since each of the V factors contains a number 
of separate perturbation terms, there are many combinations that all contribute 
to the nth term. For each perturbation term we draw a vertex with a number oflines, 
representing the A,t operators, joined to it. The process of contraction is then 
represented by joining up the lines, pairwise, in all possible ways. 

The nth-order contribution to Z is then obtainable from the following rules. 

(I) Draw all topologically distinct diagrams with n vertices. 

(2) With each phonon line labelled A associate a factor 

2w,t I 
gl(A) = (3" -2--2 . 

n WI+W,t 

(3) At each vertex conserve q vectors, since each of the perturbation terms 
contains a delta function in the q's. 

(4) At each vertex insert the appropriate coefficient. 

(5) At each vertex conserve the WI'S because of the u-integrations (3.15). 

(6) Insert a factor {(-I)njn!}(3n, where (3n comes from the n u-integrations. 

(7) Multiply by a combinational factor, representing the number of equivalent 
ways of pairing the operators, and also the number of permutations in 
(3.7) if there are several perturbation terms. 

(8) Sum over the independent A'S and l's. 

This type of perturbation formalism was first developed by Matsubara (1955) 
and has been further developed by Bloch and de Dominicis (1958), Luttinger and 
Ward (1960), and others. Specific application of this formalism to a system of inter­
acting phonons has been made by Maradudin and Fein (1962) and Cowley (1963). 

In the present work it is convenient to distinguish between those perturbation 
vertices that arise from the anharmonic terms (2.3) and (2.4), and those that are due 
to the perturbation of the external field, given by -EM, with M given by (2.10). 
Following Wilcox (1965) we will call the former "internal vertices", represented by 
• , and the latter "external vertices", represented by o. 
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The possible first-order diagrams, i.e. those with one perturbation vertex, are 
shown in Figure 1. 

(a) 

Fig. l.-First·order contribu· 
tions to Z. 

The diagram in Figure l(a) gives the contribution 

-l3f3 ~ V(AI-Al'\2- A2)!/I,(Al)!/I,(A.2) 
.1.,.1.2 1,12 

= -y23f3 ~ V(AI-AIA2-A2) (2nA +1)(2nA +1). 
~~ '2 

The diagram in Figure 1 (b) has the value 

-yE ~ .A(A-A)!/I(A) = -yE ~ .A(A-A) (2n A+l), 
M A 

which vanishes for a centro-symmetrical crystal. 

(3.16) 

Some of the second-order diagrams that contribute to the partition function 
are shown in Figure 2. 

o~--o 

(b) 
Fig. 2.-Some second·order 
diagrams. 

It is important to distinguish between "connected" and "disconnected" 
diagrams. A disconnected diagram is one, such as Figure 2(d), which consists of 
several parts that are not connected by a phonon line. 

If we denote the contribution of the connected diagrams to the partition 
function by L, then the contribution from all disconnected diagrams with n components 
is Lnjn!. Hence 

z = Zo( 1+ n~l Lnjn!) = ZoeL . 

The free energy is from (3.2) and (3.17) given by 

F = Fo-f3-1L. 

(3.17) 

(3.18) 

Thus only the connected diagrams contribute to the free energy. This is a 
well-known result (Cowley 1963) and results in the automatic elimination from F of 
those diagrams with the wrong volume dependence (Goldstone 1957; Hugenholtz 
1957). 
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IV. FREE ENERGY AND DIELECTRIC CONSTANT 

As mentioned in Section III, to obtain the free energy it is necessary to consider 
only the connected diagrams. Furthermore, since we have included in the Hamiltonian 
(2.1) terms up to order y2 we can consistently only consider those diagrams that give 
contributions to F up to order y2. 

From (2.4) and (2.10) it follows that each external vertex gives a factor of 
-E to a diagram. This shows one advantage of the diagrammatic formulation, 
namely, that the field dependence of the contribution of any diagram to the free 
energy is given immediately by the number of external vertices in the diagram in 
question. 

The diagrams that give contributiorts to the free energy of a centro-symmetrical 
crystal, up to order y2, are shown in Figure 3. The y and E dependence is shown 
for each diagram. 

~ <=> 
(a) 1'2£0 (b) lEo 

o (~ o 

(e) 

<=> 
(e) 1'2£2 

>< (i) l£4 

0 0 0 

(f) l£2 

~ 
(i) l£4 

Fig. 3.-Free energy diagrams 
up to order 1'2 for a centro­
symmetrical crystal. 

There are nine additional diagrams that give contributions to F up to this 
order, but these vanish for a centro-symmetrical crystal because of the selection 
rules 

V(O'\':"',\) = 0, 1(,\-,\) = O. (4.1) 

For a centro-symmetrical crystal the free energy can then be written, using 
(3.18) and the diagrams in Figure 3, as 

F = FO-y2f3-1[(a)+(b)]-E2f3-1(c)--:-y2E2f3-1[(d)+(e)+(f)+(g)+(h)] 

-y2E4f3-1[(i)+(j)] +0(> y~) . (4.2) 

The first term Fo is the free energy of a harmonic crystal.in the absence of an 
external field. The second term (diagrams (a) and (b)) is the usual correction due to 
the anharmonic tertns, but still in the absence' of the electric field. The third term 
(diagram (c)) is the correction to the free energy of a harmonic crystal due to the 
external field, and gives rise to the field-independent dielectric constant of the har­
monic crystal. The fourth term (diagrams (d), (e), (f), (g), and (h)) depends both 
on the anharmonicity and the field, and gives anharmonic contributions to the 
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field-independent dielectric constant. This term has been evaluated by Szigeti (1959) 
for the quantum mechanical case and by Wilcox (1965) for the classical case, and gives 
rise to the observed temperature dependence of the field-independent dielectric 
constant. The last term (diagrams (i) and (j)) gives a contribution to the dielectric 
constant that is proportional to E2, i.e. the lowest order contribution to the field­
dependent part of the dielectric constant. 

From (1.2) and (4.2) the static dielectric constant is given by 

Es = Eoo+ (Srrj,BV)(c) +y2(87Tj,BV)[(d)+ (e)+ (f) + (U)+ (h)] 

+y2(167Tj,BV)[(i)+(j)]E2+ .... (4.3) 

Comparing this with the phenomenological expansion (1.1), the lowest order 
contribution to the coefficient E2 is given by 

(4.4) 

Evaluating the contributions of the diagrams (i) and (j) by means of the rules given 
in Section III, we obtain 

E2 = -y2(1287T.A'gjVli4w~){2.A'o V(OOOO) -liwo.A'(OOO)}. (4.5) 

Allowing for differences in notation, the first term in this result is equivalent to 
the result obtained in Part I for the rigid ion model. The second term arises solely 
from the deformability of the ions. 

v. EVALUATION FOR THE ALKALI HALIDES 

The general result (4.5) will now be evaluated for the alkali halides. The model 
to be used is the simple anharmonic shell model with only the negative ion polarizable 
and with short range repulsive forces between shells of nearest neighbours. This 
model has been discussed in a previous paper (Oitmaa 1967b). 

The coefficients in (4.5) can be expressed in terms of the coefficients used in 
Oitmaa (1967b) as 

V(OOOO) = /4N-l(lij2wo)2 P(04 j 04 j 04 j 04) , 

.A'o = Nl(lij2wo)lM(04) , 

.A'(OOO) = i-N-l(lij2wo)3/2M(04j04j04). 

Using these results (4.5) can be written as 

} (5.1) 

E2 = -y2(27TM(04)4j3vwg){P(04j04j04j04) -(4w~jM(04))M(04j04j04)}. (5.2) 

From Appendix I it follows that 

P(04j04j04j04) = ~(04j04j04j04) +'7/~R(04j04j04j04), (5.3) 

where ~(04 j 04 j 04 j 04) and ~R(04 j 04 j 04 j 04) are respectively the total and repulsive 
anharmonic coefficients for rigid ions. The parameter '7/ is given by 

'7/ = -4(R- YO)/(R+k+ Y 20) , (5.4) 
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where R is defined in terms of the derivatives of the short range repulsive potential 
4>R(r) by 

(5.5) 

and where 
o = -47re2/3v. (5.6) 

In this work we consider both the repulsive and Coulomb contributions to the 
coefficient q)(04; 04; 04; 04). The Coulomb contribution is considerably less than the 
repulsive part, and to simplify the calculation we consider the Coulomb contribution 
only for n~arest neighbours. The coefficient q)(04; 04; 04; 04) is then given by 

1 (4) 12 N 12,) q)(04; 04; 04; 04) = -2 24> (ro) +""24> (ro) - ""34> (ro) , 
m . ro ro 

where 4>(r) is the total nearest neighbour potential given by 

4>(r) = 4>R(r) -e2/r 

and m is the reduced mass given by 

m-l = mIl + mil . 

(5.7) 

(5.8) 

(5.9) 

'From Appendix II it follows that the dipole moment coefficients are given by 

M(04) = (e/mi)(I+X) ' (5.10) 

where 

x = Y(R- YO)/(R+k+ Y 20) (5.11) 
and 

M(04; 04; 04) = {eYmi/(R+k+ Y 20)} q)R(04; 04; 04; 04). (5.12) 

For a thin rod of dielectric the frequency ClJO of the q = 0 optic mode, with 
displacements parallel to the long direction, can be obtained from the theory in 
Oitmaa (1967b) as 

mw~ = R+O-(R- YO)2/(R+k+ Y 20). (5.13) 

This result is equivalent to the expression obtained by Woods, Cochran, and Brock­
house (1960) for the infrared absorption frequency of this model. 

The adjustable parameters Y and k can be obtained by using the results 
(Havinga 1960) 

where the polarizabilities OCoo and OCo are given by 

47r Eo-l 
-oco=--
3v Eo+2 

and 

(5.14) 

(5.15) 

The result (5.2) can then be evaluated numerically. We do this for NaI, using 
the following room-temperature data (Born and Huang 1954): ro = 3 ·231 X 10-8 cm, 
EO = 6·60, Eoo = 2·91, e = 4·803XIO-10 e.s.u., ml = 3·809XIO-23 g, m2 = 
21·027 X 10-23 g. 
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For the short range repulsive potential we use a Born-Mayer potential of the 
form 

tPR(r) = Dexp(-r/p) , (5.16) 

with 
p = 0·363 X 10-8 cm, Dexp(-ro/p) = 2·33x 10-13 erg. 

These data then give the results: 

R = 2'742xl04 erg cm-2, v = 6·746XlO-23 cm3, C = -1·432 X 104 erg cm-2, 

Y = -2'106, k = 13 ·58 X 104 erg cm-2, iii = 3 ·225 X 10-23 g, 

(LIO = 2 ·01 X 1013 sec-I, 7J = 0'110, x = 0'058, 

(1)(04;04;04;04) = 2·269x1066, (1)R(04; 04; 04; 04) = 2·798x1066 . 

From these results it follows that 

P(04; 04; 04; 04) = 2'576x1066, M(04) = 89'46, M(04;04;04) = -1·611 X 1041. 

Substituting these results in (5.2) gives for NaI 

"2=-4·11xlO-IO (CGS). 

This compares with -1·32 X 10-10 that was obtained in Part I for NaI on the 
basis of a rigid ion model. Thus for the shell model the predicted value of the coeffi­
cient "2 is increased by a factor of approximately three over the rigid ion result. 
Some of this increase is due to the fact that the linear dipole moment coefficient and 
the quartic anharmonic coefficient are increased in the shell model, but most of the 
increase in "2 is due to the contribution of an additional term (depending on the 
third-order dipole moment coefficient) which does not appear for the rigid ion model. 
This term arises solely from the deformability of the ions. 

VI. SOME HIGHER ORDER TERMS 

In Section IV the lowest order contributions to the field-dependent terms in the 
dielectric constant expansion (1.1) were obtained. These contributions arose from 
terms in the free energy proportional to y2E4. These terms did not depend explicitly 
on the temperature but only implicitly through the weak temperature dependence 
of ro and hence of (LIO and of the anharmonic coefficients. 

Further contributions to the field-dependent terms in (1.1) can be obtained by 
expanding the free energy to higher order than y2. For consistency, higher order terms 
must then also be included in the Hamiltonian (2.1). By evaluating such higher order 
contributions to the dielectric constant we obtain a check on the convergence of the 
perturbation expansion. 

In this section we include terms up to order y4 in the Hamiltonian, i.e. terms 
up to sixth order in the particle displacements in the potential energy expansion. 
The free energy is then also expanded up to order y4. Since we are only interested 
in terms that give contributions to the dielectric constant proportional to E2, or 
higher powers of E, it is only necessary to consider the free energy diagrams that are 
proportional to E4 or higher powers of E. 
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For a centro-symmetrical crystal there are 5 free energy diagrams proportional 
to y4E6, shown in Figure 4. For a crystal without a centre of symmetry there are 28 
additional diagrams of this type. These diagrams give the lowest order contribution 
to the E4 term in the expansion (1 . 1). This contribution is again independent of the 
temperature. 

Several of these terms were evaluated for NaI. For a large field of 1000 e.s.u. 
cm-1 (3 X 105 V cm-1) the change in dielectric constant due to these terms was 
smaller by a factor of at least 104 than the change calculated in Section V. Thus 
these terms are completely negligible. From this we can conclude that any decrease 
that might occur in the dielectric constant of such simple ionic crystals at large fields 
would be proportional to the square of the field strength. 

** 
00> <> <>- <: 

>-< 

Fig. 4.-Free energy diagrams 
proportional to y4E6 for a 
centro.symmetrical crystal. 

There also occur a total of 89 free energy diagrams proportional to y4E4, of which 
29 are nonvanishing for a centro-symmetrical crystal. The 29 diagrams are shown in 
Figure 5. 

These 29 diagrams give additional contributions to the E2 term in the expansion 
(1.1). These contributions all involve a single or multiple summation over the normal 
modes of the crystal and are explicitly dependent on the temperature, in contrast 
to the lowest order contributions evaluated in Section IV. The summations were 
evaluated numerically by taking a sample of q vectors evenly distributed throughout 
the first Brillouin zone. The sample used was the same as that used by Hardy (1962), 
which is a slight modification of that used originally by Kellermann (1940). This 
sample consists of 48 distinct q's, which by symmetry corresponds to exactly 1000 
points in the zone. In this work it was necessary to distinguish between q's that 
merely involved an interchange of x and y, or x and z, components, since the 
anharmonic coefficients involved were not symmetric in x, y, z. This made it necessary 
to consider 106 distinct q's corresponding to the 1000 points. The 29 terms were then 
evaluated numerically for various temperatures between OaK and 5000 K using the 
IBM 360/50 computer of the University of New South Wales Computing Centre. 
One approximation that was made in evaluating these higher order terms was to re­
place the modified shell model anharmonic coefficients lJf by the rigid ion ones rf>. 
This should not introduce an error of more than about 10% and greatly decreases 
the amount of work involved in calculating the various anharmonic coefficients. 

The variation with temperature of the total contribution of these diagrams to 
the coefficient €2 in (1.1) is shown in Figure 6. At high temperatures the variation 
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with temperature is almost linear. Using this result and the result of Section V, the 
high temperature dielectric constant of NaI can be expressed in the form 

ES = Eo-(4·0-1·6xlO-3 T)E2. 

At low temperatures the variation with T is more complicated. 

Fig. 5.-Free energy diagrams 
proportional to y4E4 for a 
centro· symmetrical crystal. 

(6.1) 

At all temperatures the contribution of these terms to the coefficient E2 is of the 
order of 1(}-20% of the lowest order term, and so the perturbation expansion appears 
to be quite good. 
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VII. DISCUSSION 

The lowest order contribution to the coefficient of the E2 term in the pheno­
menological expansion (1.1) of the static dielectric constant of a crystalline solid 
with deformable ions has been calculated. This contribution is independent of the 
temperature, and the same result can in fact be obtained for a classical static lattice 
model. For NaI this results in a small decrease in the static dielectric constant of 
4 X 10-4 in a field of 1000 e.s.u. cm-I . 

The next order terms give a temperature-dependent contribution to this 
coefficient which is of the order of 10% of the lowest order contribution. This situa­
tion is completely analogous to that which occurs with the ordinary field-independent 
static dielectric constant EO. To a first approximation EO is independent of the tem­
perature and can be obtained for a static lattice model. Higher order terms, which 
at low temperatures must be calculated quantum mechanically, give a small 
temperature-dependent correction to EO. 

T (OK) 

Fig. 6.-Contribution to E2 of 
the diagrams of order y4. 

The lowest order contribution to the coefficient of the E4 term in the expansion 
(1.1) is also independent of the temperature. The change in dielectric constant due 
to this term is negligible compared with the change due to the E2 term. Thus any 
decrease that might be observed in the static dielectric constant of simple ionic crys­
tals, such as the alkali halides, would be proportional to the square of the field 
strength. 
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APPENDIX I 

Shell Model Anharmonic Coefficient 

The shell model anharmonic coefficient P(04; 04; 04; 04) is given from Oitmaa 
(1967b) by 

P(04; 04; 04; 04) = ~ 
1'1" I'" 

K/c'/C"/C'" 

ex(K I 04) ex(K' I 04) ex(K" I 04) ex(K'" I 04) 

(m"m", m,," m"",)t 

This expression can be simplified considerably by using the invariance relations 

!fxxXX(lK, l' K', l" K", l'" K"') = !fxxxx(OK, (l' -l)K', (l" -l)K", (l'" -l)K"') 

and 

the latter of which implies that 

~ ,1. (ll l' , l" " l'" "') - - ~ ,1. (l2 l' , l" " l'" "') ~'t'xxxx ,K, K, K - ~\fXXXX ,K, K, K • 
I I 

Using these invariance relations and the result 

ex(l I 04) _ ex(2 I 04) = (~+ ~)t , 
mi m~ ml m2 

the expression (AI) simplifies to 

(AI) 

P(04; 04;04; 04) = (~+~)2 ~ !fxxxx(Ol,l'l,l"l,l"'I). (A2) 
ml m2 1'1"1'" 
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The anharmonic force constant tPxxxx(Ol, l'l, l"l, l"'l) is given by the result 
(3.15) of Oitmaa (1967b). Using this result, the expression (A2) can be simplified to 
give 

P(04; 04; 04; 04) = ~(<1>xxxx(Ol, 01, 01, 01)-4 ~ (BD)xx (lK, 0) <1>!xx(OK, ll, ll, ll)) , 
m I" (A3) 

where <1>xxxx(Ol,Ol,Ol,Ol) and <1>!xx(OK,ll,ll,ll) are rigid ion force constants and 
Band Dare 3nx3n matrices, defined in Oitmaa (1967b). 

Using the result of Part I for the rigid ion coefficients <1>(04;04;04;04) and 
<1>R(04;04;04;04), and using the explicit forms, for the NaCI structure, of the 6x6 
matrices Band D for q = 0, gives for (A3) 

P(04;04;04;04) = <1>(04;04;04;04) +1)<1>R(04;04;04;04) , (A4) 

where 

1) = -4(BD)xx (11, 0) +4(BD)xx (12, 0) 

where kl' k2, and Y1 , Y2 are respectively the core-shell force constants and the shell 
charges for the positive and negative ions. 

For the simpler case, if only the negative ion is polarizable, putting kl --+ 00, 
k2 = k, Y1 = 0, and Y2 = Y we obtain 

1) = -4(R- YO)/(R+k+ Y 20) . (A6) 

For k --+ 00, 1) --+ 0 so that (A4) reduces to the rigid ion result. 

ApPENDIX II 

Dipole Moment Ooefficients 

From the result (4.4) of Oitmaa (1967b) the first-order dipole moment coefficient 
M(04) is given by 

M(04) = e ~ m;;t Z"ex(K I 04) -e ~ m;) Y"ex(K' I 04) (BD)xX(K'K,O). (A7) 
" ",,' 

Writing out the summations and using the results of Appendix I for the case 
when only the negative ion is polarizable gives 

M(04) = eiii-! (l+X) , (AS) 

where 

x = Y(R- YO)/(R+k+ y 20). (A9) 

For k --+ 00, X --+ 0 so that (AS) reduces to the rigid ion result. 
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From the result (4.6) of Oitmaa (1967b) the third-order dipole moment coefficient 
M(04;04;04) is given by 

M(04; 04; 04) = -e ~ 

For two-body forces only, the force constants in this expression are nonzero 
only if they refer to at most two distinct ions. For this case (AlO) can be simplified 
to give 

M(04; 04; 04) = e(ml1 +m21)3/2 ~ Y/C{Dxx(Kl, 0) -DXX(K2, O)} ~ If>!xx(01, 01, 01, l2) 
/C I 

= ~ If>R(04; 04; 04; 04) , (All) 

where 

(A12) 

For the case when only the negative ion is polarizable (A12) simplifies to 

(A13) 

For k ~ 00 this gives ~ ~ 0, so that (All) reduces to the rigid ion result, namely, 
that the higher order dipole moments vanish. 


