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Summary
A reduction of order procedure is outlined which allows virtually any order
multipole analysis for a general spherical surface harmonic to be rapidly carried out.
The geomagnetic multipoles, to order eight, are found for the epoch 1965-0 and
the theory is used to obtain the spherical harmonic coefficients when the dipole
axis is chosen as polar axis.

I. INTRODUCTION

The idea of using a multipole representation in potential theory appears to
have been initially suggested by Gauss (1877) but the first attempt at a fuller
development is due to Maxwell (1892) and the basic theory has become known as
Maxwell’s theory of poles. The subject has undergone further discussion and
development in the works of Sylvester (1909), Courant and Hilbert (1953), and
Hobson (1955). Geomagnetic multipoles have been considered by Umov (1904),
Chargoy (1950, 1955), Chargoy and Alvarez (1957), Zolotov (1966), Winch and
Slaucitajs (1966a, 1966b), and Winch (19674, 1967b). Whilst multipole representations
are frequently mentioned in electromagnetic theory, they are generally regarded as
redundant to the normal expansions in terms of orthogonal functions. However,
knowledge of the multipole axes does allow a geometrical visualization of the field
and it is of interest to enquire into the behaviour and relative importance of the
multipoles representing the geomagnetic field. Moreover, since the multipole strengths
and axes are invariant under rotation of the coordinate frame, it is a definite advantage
to have a procedure that can rapidly transfer back and forth between the multipole
representation and the more usual spherical harmonic representation. For, once
this can be done, we have a very practical method for carrying out the transformation
of the Gaussian coefficients of the field, under a rotation of polar axis. The outline
of such a method is included in this paper and it is shown how this allows evaluation
of the field at any point without requiring knowledge of the explicit forms of the
spherical harmonics.
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II. Basic THEORY

We start from the definitions for the spherical harmonics Pm(cos 8) cos m¢
and P?(cos ) sinme, which can be written as

Pm(cos ) cosm¢ = Anmr"“{ (a%)n_m I;[ %}% , (1a)
Pr(cos ) sinme — A,,,nrm{(%)"_m II %}%, (1b)

where 0 is the geographic north colatitude and ¢ the Greenwich east longitude as
usual. Here, the products H are over all integral values of ¢ satisfying 0 < |7,| <im

and zero is included when m is odd. The derivatives o/ot:, are derivatives in the
directions of the vectors #,, which are just unit vectors in the z—y plane displaced
symmetrically at intervals of =/m about the positive z axis (¢ = 0), so that ¢! is
the reflection of #, (in the x axis) and £%,, when it exists (i.e. for odd values of m),
coincides with the x direction. The derivatives 9/ds}, are in the directions of the
unit vectors s!,, which can be obtained from the #!, by an eastward rotation of 7/2m
(this follows from sinm¢ = cosm(p—m/2m)).

Whilst these definitions are different from the usual ones, the equivalence can
be easily shown (Hobson 1955). For Schmidt quasi-normalization we must take

A = (=)"2™{(2—8pe) (n—m) ! (n+m) 1} 2.

The points where the vectors Z = (0,0,1) and #, (or si,) meet a sphere, centred at
r = 0, are called the poles of the surface harmonic P}(cos 6) cos me (or Py(cos 0) sin m)
on the sphere. If m = 0, £ is the only pole, and if m = n then % is not a pole.

This idea may be generalized to give an analogous representatioﬂ for a general
surface harmonic of the nth degree given by

Y, = 3 (g} cosmg +hfsinmd) PE(cos0) (@)
for, using equations (1), we may write
v &) o g s g
S E LGRS e

where the coefficients c,, are obtained by expanding the above products. When it
is taken into account that for harmonic functions

(0/0x)*+(2/9y)*+(0/02)* = 0,

it can be shown (Sylvester 1909) that the ternary quantic of differential operators
in (3) can be written as the product of » real linear factors (canonical form), i.e.

Vo= (Pt M I (g + oy o) @)
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and that this representation is unique except that the n unit vectors u; = (u;, v;, w;)
may be reversed in pairs. Equation (4) is called the multipole representation of ¥, ;
M, is called the multipole strength and the vectors u; the multipole axes, which
meet the sphere at the poles (6;,¢;). A potential of the form

V, =Y,

will be called a multipole potential and can be thought of as due to a singular point
of degree n at r = 0. It is easy to see that such a potential is formed when two singular
points of degree n—1, having the same n—1 axes but opposite strengths, are brought
together at r = 0 along an nth axis in such a manner that the product of their
strength and distance apart is kept constant. This procedure is an obvious
generalization of the technique employed in forming the familiar dipole potential
(multipole of order one) by bringing together two equal but opposite poles (order zero).

In practice, for the geomagnetic field, the coefficients g5 and A} in equation (2)
are known from the harmonic analysis of the field at the surface of the Earth, being
just the usual Gaussian coefficients. We thus have to combine (2) and (4) and
solve for the axes w; and the strength M.

III. RECURRENCE RELATIONS

The highest order geomagnetic multipole analysis that has been carried out
is the fifth (Winch 19675), but the solution by any of the methods so far put forward
of any higher order multipole problem is virtually, although not theoretically,
impossible due to algebraic complexity and difficulties in solving the final nonlinear
equations. However, using recently derived recurrence relations for P7 a technique
has been perfected which quickly gives the solution to multipole problems of much
higher orders. It has been shown (James 1967) that the equations to be solved
for the w, and M, are of the form

ay

gn
b

M, R m=0,1,...,n, (5)

by
where the a and b7 are generated as functions of the u; through the relations
(starting from ad = 1)

20,1 = e y1 {(1+-8y) iy aff =1 — By a1} —0p 1y {0l OF T B OF 1} 20040 Vi1 OF,

(6a)

267, 1 = Ui {ofi bt —BR., b%“} F 01 {(14-8my) aftir aﬂ’l 4871 “'IQH} +2wy 1 Vi1 DR
(6b)
Here
altr = {32 —8p)(k+m)(k4+m+1)H,  Biy = {(14+3n0)(k—m)(k—m—+1)}},

Y = {(k—m-1)(e+m+1)}.
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In all this work the conventions

an =gn =0 when either m<0 or m>n
and ’
bm=hr =0 when either m<0 or m>n

are to be understood and &, is the Kronecker delta

1, m=p,
0, m#£p.

IV. TRANSFORMED COEFFICIENTS

Using the relations (6) it is a simple matter to transform back and forth
between the multipole and spherical harmonic representations. This is particularly
advantageous when it is required to find the harmonic expansion of a potential in a
new polar and meridional reference frame. For, suppose we have a potential

V=% V= £ (- M,,(iljl (uM.V))%,

where u,; represents the ith axis of the nth order multipole V,, or equivalently,
V= 3 ro1 3 (gpcosmg +hp sinme) Pr(cos),
n=1 m=0

and we transfer to a new system of coordinates (6*,¢*). We wish to determine
the new coefficients (¢9™)* and (h7)* such that

V= %1 ron f‘.o {(gm)*cosme* +(h7)*sinme*} Pr(cos 6%) .
n= m=

If the new polar axis has direction cosines given by U = (U, V, W) and if we
suppose for the moment that longitude is measured anticlockwise around the new
pole, looking from above the pole, from the great semicircle containing the north
geographic pole and the two extremities of the new polar axis, then, from the
sine and cosine formulae of spherical trigonometry, the components of u,; in the new
coordinate system are easily seen to be

u;i = {wni_(uni' U)wi1 _Wz)_% ) ’U:u = {uni V —vy U}(l — W)=, w:u =uy.U,
so the new multipole representation of ¥V, namely

V=% (e 11 e,

is immediately obtainable. Substitution of the ‘‘transformed” axes u;, into
equations (6) then quickly generates (g7)* and (k7)*. Note that in (6) the subscript »
on u, has been omitted for conciseness and i is represented by k+1. We see, in
particular, from the canonical form (4) that if we choose our new polar axis to
coincide with one of the multipole axes, say u,, then the corresponding factor
(#y;. V) transforms merely to 0/dz*, and thus in this new system the number of
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coefficients required to represent the field is reduced by two. Indeed, it is easily
seen from relations (6) that the coefficients (g7)* and (h?)* will be zero so that terms
containing P?(cos 6*) will be missing from the expansion of V. If for some reason
it were desired to use the point G (with direction cosines Uy) as reference for longitude,
instead of the geographic north pole, it is merely necessary to replace (gn)* and
(hz)* by

(g™)*cos ma + (A1) *sinma and —(g™)*sinma +-(hM)*cos ma

respectively, where o is the angle between the vectors Uxz and UX Ug and can
be obtained from

Reosa = (Ux2).(UxUg) = We(U2+V)—W({UUs+VV,),
Rsina = (UX2) X (UxUg). U = VUg—UVj.

For many purposes in geomagnetism it is desirable to use geomagnetic
coordinates (@, A). In this case the reversed dipole axis —u,, is taken as polar axis
and the longitude is referred to the south geographic pole. For comparison the
geomagnetic coefficients are given in Table 1 together with the data of Hurwitz
et al. (1966) which were used for the computations of the present paper.

If the transformation has to be made on a more general field that has parts
due to internal, external, and non-potential sources then a separation of the field
should be made first and the above procedure applied to each part separately. Whilst
in the present paper external and non-potential sources are neglected, it is interesting
to note a very recent method of field separation that has been put forward by
Winch (1968). Winch’s method involves the use of Cartesian force components of the
field and, interestingly, is based on the recurrence relations (6) together with the
corresponding relations for the other sources of the field.

V. FiELp EVALUATION

Normally in order to evaluate the function V at any point P on the Earth
it is necessary to find the explicit forms of the functions PP(cosf) and evaluate
these at the colatitude of P. However, if we bear in mind that P?(1) = 8,4, we see

that the value of V at the geographic pole is just E ¢9. Similarly, if we make use
of the transformation technique of the previous sectlon and rotate our polar axis
so that it passes through P, then the value of V at P can be obtained as Z (g2)*.
n=1
VI. RELATIVE MAGNITUDES

Useful magnitudes in comparing the overall importance of each of the
multipoles are the r.m.s. values of the parameters X,, Y, Z,, and T', on the surface
of the Earth (r = 1). Here, as usual,

19V, 1 oV, 6V,,)

= _2%n > 9¥n _C7n — (X2 2 | 72V}
Yot = (=152 B0 -%0) Ta= vz



460

SCHMIDT SPHERICAL HARMONIC COEFFICIENTS IN y(EARTH RADII)™2
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TaBLE 1

Coefficients are geographic (g, k) and geomagnetic (g*, h*)

n m=0 1 2 3 4 5 6 7 8
1 g 30450 —2135
7* —31066 0
h 5772
h* 0 ‘
2 g 1616 2067 1585
g% 588 2069 —1883
h —1999 132
* 2232 499
3 g 1159 —1976 1300 864
* 796 —1154 —1080  —552
h —411 245 —156
h* —1706 1154 —508
4 4 923 782 494 366 252
g* 808  —476 5 204 —201
h 142 —285 4 —243
h* 941 187  —50 —301
5 g —184 345 244 —37 —158 —62
7* —113 66 —305 63 —149  —d
h 14 124 —108 —109 65
h* 332  —d47 161 101 37
6 g 34 65 5 —228 —14 13 —111
g* 45 —7 46 188 —137 33 —47
h 22 112 51 —24 —19 —22
h* 10 —49 97  —54 —47 —93
T g 89 —45 6 4 —25 —22 22 10
g* 66  —6l 17 —18 6 4 40 -1
h —40  —25  —18 3 31 —21 -2
* —24 61 2 3% 17 -1 23
8 g 0 11 3 —13 -2 10 —14 11 6
7* 11 2 —4 2 19 6 33 2 —10
h —10 1 5 —19 7 21 4 —19
h* 6 —3 3 1 5 1 12 13

Making use of the orthogonality of the harmonics we know that, when » = 1 Earth

radius,

and

R 1 1 n
2 — 2 ot — m)2 my2
Ti=g | Visinodsds - S (e

7% = (n+1)2V2.
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Using the perhaps less familiar relation (see, for example, Copson 1962)

J " (sin 6)~1 P (cos 6) Pl(cos 8) 40 — 8,,,/2m,
0
we find

Yi—1 3 m{@n)+tn?
and

X2 = % (@rr+0p [ @Pyjaopsinfao

= 3 {uln-+1)/n+1)—m} (g B

In evaluating this last integral we have also made use of the differential equation
satisfied by Pr. A simple addition gives us

— n '
7 = (n+1) ZO {(gm)2+(R7)%} .
m=
Similar equations to the above have been listed by Lowes (1966).

TABLE 2

X,, Y,, anD T, IN y UNITS AND n!M, IN y(EARTH RADII)"+2

n=1 2 3 4 5 6 7 8
12,, 24989 3550 2944 1872 729 379 219 59
17,, 4352 2988 2223 1043 498 371 118 74
1_',, 43934 7336 5635 3214 - 1310 781 364 138
n!M, 31066 4888 4122 2553 976 900 482 214

Some interesting relationships between the r.m.s. values can be drawn from
these equations. For instance, the r.m.s. vertical intensity Z, = (Z—,ZL)%, the r.m.s.
horizontal intensity H, = (X2+Y2)}, and the r.m.s. total intensity 7', = (T2)
bear constant ratios to each other, independent of the field anomalies and depending
only on the order of the multipole. Specifically

Z,:H,:T, =+/(n+1) :/n:4/(2n+1).

Thus the r.m.s. vertical field is always at least slightly greater than the r.m.s.
horizontal field and knowledge of any one of V, = (V2), Z,, H,, or T, is sufficient
to determine the others.

The values of X, = (X2)}, ¥, = (Y2)}, T,, and n!M,, are given in Table 2.
The dipole is seen to be by far the most important multipole. Indeed, the total
magnetostatic energy, exterior to the Earth, associated with all the other multipoles,

namely 1 3 T2/(2n+1), amounts to less than 39, of the dipole’s energy %Q_"_%.
n=2
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VII. SoLuTioN oF EQUATIONS

In previous attempts to solve the multipole problem of order n the authors
generally have been forced in the end to find the solutions to a set of 2241 nonlinear
equations of degree n+1, the nonlinearity being due to products of M, and one
component taken from each of the unit vectors u,; (i =1,...,n), supplemented
by the n equations u,;.u,, = 1.

Zolotov (1966) has made use of Sylvester’s (1909) theory and has reduced
the problem to that of solving two polynomial equations of degree 2n. Like the
other techniques this is also very awkward to apply for n greater than about five.
In the method of the present paper none of the difficulties associated with the
nonlinearity arise since equations (6) are essentially of degree two only. Another
advantage is that nowhere are the explicit forms for the spherical harmonics required
to be known. The method of solving equations (5) and (6) is briefly as follows.

It is easily seen that each term on the left-hand side of equation (5), if written
out in full by making use of the recurrence relations (6), contains as a factor either
Uny, Vpy, OF Wy;. Hence, by removing the restriction that u,; be a unit vector and
letting it have length M, equations (5) can be rewritten

m
ay ga

) m:—-O,l,.-.,n.
hy

by
Then equations (6), with ¥ = n—1, namely
297 = Una{(1+8) af afi=d —B7 apt 1} —vnn{al =] +-B7 b1} 2w, v alty
2k = Unnfar BR= —Br bRl } +van{(1+8m) aff af=f 4B ant i} +2w,, Yo bl

can be regarded as a set of 2rn+1 equations of degree two in the 2n+2 unknowns
a1, bp_y, Unp, Vny, and w,,, and the last one can be eliminated through u,,.u,, = 1.

If any guess is made for the axis u,, the above equations, with m  n, become
2n—1 linear equations in the 2n—1 unknowns a_;, b7 ; and this system is easily
inverted by any of the standard methods to yield a self-consistent set of initial
values. By using this technique it is only necessary to make guesses for two of
the 2n+1 unknowns and one then obtains 2n4-1 values that satisfy all but two of
the 2n+1 equations. These values can be used to start a Newton—Raphson iteration
on the full set of 2rn+1 equations. This type of iteration scheme was found to
converge extremely quickly with apparently any initial guess for the axis. The
“reduced Gaussian coefficients” a? ; and b ; are then used in the left-hand sides
of (6), with £ = n—2, and the preceding method is repeated with a guess for u, ,_,.
This process is continued until the final set of equations ‘“‘to be solved” (equations (6)
with & = 0) are u,; = af, v,; = b}, and w,, = a}. In practice, the geographic polar
axis was used for all initial guesses and this generated the multipoles in order of
increasing distance from the geographic pole.

Using .
M, = {(a)?*+(a})2+(B})2H (7)

we can easily reconvert u,, to a unit vector to complete the analysis. The resulting
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poles (0., $,;) are given in Table 3. Equation (7) is interesting since it describes M,
as if it were the strength of an ordinary dipole whose axis coincided with one of the
multipole axes.

A fifth-order test deck was run consisting of arbitrarily chosen numbers as
data and initial guesses that reproduced these data with errors as large as 100 000%,.
In seven iterations the first axis was obtained and all errors were less than 0-019%,,

TABLE 3
POLES (0, ¢,;) TO NEAREST TENTH OF A DEGREE

n i =1 2 3 4 5 6 7 8
1 0 168-6
é 110-3
2 0 229 105-0
é 32-8  332-0
3 0 20-7 585 635
é 344-7 1408 224-3
4 0 24-1 36-0 56-5 67-8
é 108-1  218-3  307-1 42-5
5 0 16-5 43-0 49-4 63-2 90-6
é 270-4 3485 1895 513 354:0
6 0 29-4 40-1 38-8 73-0 80-7 93-2
é 248-2  131-0 2-1 51-0 1204  357-9
7 0 17-6 39-6 515 54-8 58-6 64-17 65-4
é 3484  158-8  311-7 17-3  201-1 95-8  238-6
8 0 25-5 315 60-8 61-7 69-1 70-4 79-0 96-3
é 3267  197-9  182-8 345 93-7  227-3 3581  306-5

which illustrates the speed at which multipole analysis can now be carried out.
Thus we have at our disposal a very rapid and interesting means of transforming
a series of spherical harmonics under change of polar axis.

In a following paper (Multipole analysis. II) the secular variation of the
geomagnetic multipoles will be discussed.
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