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Summary 

A reduction of order procedure is outlined which allows virtually any order 
multipole analysis for a general spherical surface harmonic to be rapidly carried out. 
The geomagnetic multipoles, to order eight, are found for the epoch 1965· 0 and 
the theory is used to obtain the spherical harmonic coefficients when the dipole 
axis is chosen as polar axis. 

I. INTRODUCTION 

The idea of using a multipole representation in potential theory appears to 
have been initially suggested by Gauss (1877) but the first attempt at a fuller 
development is due to Maxwell (1892) and the basic theory has become known as 
Maxwell's theory of poles. The subject has undergone further discussion and 
development in the works of Sylvester (1909), Courant and Hilbert (1953), and 
Hobson (1955). Geomagnetic multipoles have been considered by Umov (1904), 
Ohargoy (1950, 1955), Ohargoy and Alvarez (1957), Zolotov (1966), Winch and 
Slaucitajs (19600, 1966b), and Winch (1967a, 1967b). Whilst multipole representations 
are frequently mentioned in electromagnetic theory, they are generally regarded as 
redundant to the normal expansions in terms of orthogonal functions. However, 
knowledge of the multipole axes does allow a geometrical visualization of the field 
and it is of interest to enquire into the behaviour and relative importance of the 
multipoles representing the geomagnetic field. Moreover, since the multipole strengths 
and axes are invariant under rotation of the coordinate frame, it is a definite advantage 
to have a procedure that can rapidly transfer back and forth between the multipole 
representation and the more usual spherical harmonic representation. For, once 
this can be done, we have a very practical method for carrying out the transformation 
of the Gaussian coefficients of the field, under a rotation of polar axis. The outline 
of such a method is included in this paper 'and it is shown how this allows evaluation 
of the field at any point without requiring knowledge of the explicit forms of the 
spherical harmonics. 
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II. BASIC THEORY 

We start from the definitions for the spherical harmonics P:i'( cos 8) cos m.p 
and P:i'( cos 8) sin m.p, which can be written as 

(la) 

Pm( 8)' -I. _ A n+l{(O)n-m II O}1 
n cos smm'l' - nm r oz i 08~ r' (lb) 

where 8 is the geographic north colatitude and .p the Greenwich east longitude as 
usual. Here, the products II are over all integral values of i satisfying ° < Iii <: tm 

i 
and zero is included when m is odd. The derivatives %t~ are derivatives in the 
directions of the vectors t;", which are just unit vectors in the x-y plane displaced 
symmetrically at intervals of 7T/m about the positive x axis (.p = 0), so that t;;,1 is 
the reflection of t;" (in the x axis) and t~, when it exists (i.e. for odd values of m), 
coincides with the x direction. The derivatives O/08~ are in the directions of the 
unit vectors s~, which can be obtained from the t;" by an eastward rotation of 7T/2m 
(this follows from sin m.p = cosm(.p-7T/2m)). 

Whilst these definitions are different from the usual ones, the equivalence can 
be easily shown (Hobson 1955). For Schmidt quasi-normalization we must take 

Anm = (_)n 2m{(2-omo) (n-m)! (n+m) !}-t . 

The points where the vectors Z = (0,0,1) and t;" (or s~) meet a sphere, centred at 
r = 0, are called the poles of the surface harmonic P:i'( cos 8) cos m.p (or P:i'( cos 8) sin m.p) 
on the sphere. If m = 0, z is the only pole, and if m = n then Z is not a pole. 

This idea may be generalized to give an analogous representation for a general 
surface harmonic of the nth degree given by 

n 
Y n = ~ (g:i' cos m.p +h:i' sin m.p) P:i'( cos 8) , (2) 

m~O 

for, using equations (1), we may write 

Y n = rn+1 m~o (~)n-m(g:i' If o~~ +h:i' If o~J~ 
= rn+1 ~ f cml (~)n-m(~)l(~)m-l~, 

m~O I~O OZ ox oy r 
(3) 

where the coefficients Cml are obtained by expanding the above products. When it 
is taken into account that for harmonic functions 

it can be shown (Sylvester 1909) that the ternary quantic of differential operators 
in (3) can be written as the product of n real linear factors (canonical form), i.e. 

{ n (0 0 O)}1 Yn = (-)nrn+1Mn iII1 Ujox +V1oy +Wt oz r' (4) 



MULTIPOLE ANALYSIS. I 457 

and that this representation is unique except that the n unit vectors Uj = (Uj , Vi' Wi) 

may be reversed in pairs. Equation (4) is called the multipole representation of Yn ; 

M n is called the multipole strength and the vectors Ui the multipole axes, which 
meet the sphere at the poles (8i,4>i). A potential of the form 

Vn = r-(n+1)Yn 

will be called a multipole potential and can be thought of as due to a singular point 
of degree n at r = O. It is easy to see that such a potential is formed when two singular 
points of degree n-l, having the same n-l axes but opposite strengths, are brought 
together at r = 0 along an nth axis in such a manner that the product of their 
strength and distance apart is kept constant. This procedure is an obvious 
generalization of the technique employed in forming the familiar dipole potential 
(multipole of order one) by bringing together two equal but opposite poles (order zero). 

In practice, for the geomagnetic field, the coefficients y';; and h';; in equation (2) 
are known from the harmonic analysis of the field at the surface of the Earth, being 
just the usual Gaussian coefficients. We thus have to combine (2) and (4) and 
solve for the axes Uj and the strength Mn. 

III. RECURRENCE RELATIONS 

The highest order geomagnetic multipole analysis that has been carried out 
is the fifth (Winch 1967b), but the solution by any of the methods so far put forward 
of any higher ordermultipole problem is virtually, although not theoretically, 
impossible due to algebraic complexity and difficulties in solving the final nonlinear 
equations. However, using recently derived recurrence relations for P';; a technique 
has been perfected which quickly gives the solution to multipole problems of much 
higher orders. It has been shown (James 1967) that the equations to be solved 
for the U i and M n are of the form 

m =0,1, .. . ,n, (5) 

where the a';; and b';; are generated as functions of the Ui through the relations 
(starting from ag = 1) 

2a~+1 = uk+1{(l +Oml) a~+l a~-l-,B~+l a~+1}-vk+1{a~+l b~-l+,B~+l b~+1}+2wk+1 Y~+l a~, 
(6a) 

2b~+1 = uk+1{a~+1 b~-l_,B~+l b~+l}+Vk+1{(1 +Oml) a~+l a~-l+,B~+l a~+1}+2wk+1 Y~+l b~. 
(6b) 

Here 

a~+1 = {t(2-0ml)(k+m)(k+m+l)}t, ,B~+1 = {(1+omo)(k-m)(k-m+l)}l, 

Y~+l = {(k-m+l)(k+m+l)}t. 
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In all this work the conventions 

a~=g~=O when either m < 0 or m >n 
and 

when either m<O or m>n 

are to be understood and Smp is the Kronecker delta 

m=p, 

m =/:p. 

IV. TRANSFORMED COEFFICIENTS 

Using the relations (6) it is a simple matter to transform back and forth 
between the multipole and spherical harmonic representations. This is particularly 
advantageous when it is required to find the harmonic expansion of a potential in a 
new polar and meridional reference frame. For, suppose we have a potential 

where Unl represents the ith axis of the nth order multipole Vn , or equivalently, 

00 n 
V = ~ r-n- 1 ~ (g~ cos nup +h~ sin.nup) P~( cos 0) , 

n=l m=O 

and we transfer to a new system of coordinates (O*,c/>*). We wish to determine 
the new coefficients (g~)* and (h~)* such that 

00 n 
V = ~ r-n- 1 ~ {(g~)*cosnup* +(h~)*sinnup*}P~(cosO*). 

n=l m=O 

If the new polar axis has direction cosines given by U = (U, V, W) and if we 
suppose for the moment that longitude is measured anticlockwise around the new 
pole, looking from above the pole, from the great semicircle containing the north 
geographic pole and the two extremities of the new polar axis, then, from the 
sine and cosine formulae of spherical trigonometry, the components of Unl in the new 
coordinate system are easily seen to be 

so the new multipole representation of V, namely 

V = ~ (_)nr-n-1Mn II (u:,. V*) -, 00 ( n )1 
n=l i=l r 

is immediately obtainable. Substitution of the "transformed" axes u:, into 
equations (6) then quickly generates (g~)* and (h~)*. Note that i~ (6) the subscript n 
on Unl has been omitted for conciseness and i is represented by k+ 1. We see, in 
particular, from the canonical form (4) that if we choose our new polar axis to 
coincide with one of the multipole axes, say Un!> then the corresponding factor 
(Unl' V) transforms merely to %z*, and thus in this new system the number of 
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coefficients required to represent the field is reduced by two. Indeed, it is easily 
seen from relations (6) that the coefficients (g~)* and (h~)* will be zero so that terms 
containing P~(cosO*) will be missing from the expansion of V. If for some reason 
it were desired to use the point G (with direction cosines UG) as reference for longitude, 
instead of the geographic north pole, it is merely necessary to replace (g;:')* and 
(h;:')* by 

(g;:')*cosma +(h;:')*sinma and -(g;:')*sinma +(h;:')*cosma 

respectively, where a is the angle between the vectors Ux z and Ux UG and can 
be obtained from 

Rcosa = (Uxz).(UxUG) = WG(U2+V2)_W(UUG+VVG), 

Rsina = (Uxz) x(Ux UG). U = VUG-UVG· 

For many purposes in geomagnetism it is desirable to use geomagnetic 
coordinates (e, A). In this case the reversed dipole axis -un is taken as polar axis 
and the longitude is referred to the south geographic pole. For comparison the 
geomagnetic coefficients are given in Table 1 together with the data of Hurwitz 
et al. (1966) which were used for the computations of the present paper. 

If the transformation has to be made on a more general field that has parts 
due to internal, external, and non-potential sources then a separation of the field 
should be made first and the above procedure applied to each part separately. Whilst 
in the present paper external and non-potential sources are neglected, it is interesting 
to note a very recent method of field separation that has been put forward by 
Winch (1968). Winch's method involves the use of Cartesian force components of the 
field and, interestingly, is based on the recurrence relations (6) together with the 
corresponding relations for the other sources of the field. 

V. FIELD EVALUATION 

Normally in order to evaluate the function V at any point P on the Earth 
it is necessary to find the explicit forms of the functions P;:'( cos 0) and evaluate 
these at the colatitude of P. However, if we bear in mind that P;:'(l) = om!), we see 

00 

that the value of V at the geographic pole is just I: g~. Similarly, if we make use 
n~l 

of the transformation technique of the previous section and rotate our polar axis 
00 

so that it passes through P, then the value of Vat P can be obtained as I: (g~)*. 
n~l 

VI. RELATIVE MAGNITUDES 

Useful magnitudes in comparing the overall importance of each of the 
multipoles are the r.m.s. values of the parameters X n, Y n, Zn, and Tn on the surface 
of the Earth (r = 1). Here, as usual, 
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TABLE 1 

SCHMIDT SPHERICAL HARMONIC COEFFICIENTS IN Y(EARTH RADII)nH 

Coefficients are geographic (g, h) and geomagnetic (g*, h*) 

n m = 0 2 3 4 5 6 7 8 

g -30450 -2135 
g* -31066 0 
h 5772 
h* 0 

2 g -1616 2967 1585 
g* -588 2969 -1883 
h -1999 132 
h* 2232 499 

3 g 1159 -1976 1300 864 
g* 796 -1154 -1080 -552 
h -411 245 -156 
h* -1706 1154 -508 

4 g 923 782 494 -366 252 
g* 808 -476 5 294 -291 
h 142 -285 4 -243 
h* 941 187 -50 -301 

5 g -184 345 244 -37 -158 -62 
g* -113 66 -305 63 -149 -4 
h 14 124 -108 -109 65 
h* 332 -47 161 101 37 

6 g 34 65 5 -228 -14 13 -111 
g* 45 -7 46 188 -137 33 -47 
h -22 112 51 -24 -19 -22 
h* 10 -49 97 -54 -47 -93 

7 g 89 -45 6 4 -25 -22 22 10 
g* 66 -61 17 -18 6 4 40 -1 
h -40 -25 -18 3 31 -27 -25 
h* -24 61 2 35 17 -1 23 

8 g 0 11 3 -13 -2 10 -14 11 6 
g* 11 2 -4 2 -19 6 33 2 -10 
h -10 1 5 -19 7 21 4 -19 
h* 6 -3 3 1 5 12 13 

Making use of the orthogonality of the harmonics we know that, when r = 1 Earth 
radius, 

- 1 fIn 
v~ = - V~sinO dOd¢> = -- ~ {(g;:')2+(h;:')2} 

47T 417 2n+l m=o 
and 

Z~ = (n+l)2V~. 
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Using the perhaps less familiar relation (see, for example, Copson 1962) 

f: (sine)-lP:;'(cose)P~(cose) de = 8mzl2m, 

we find 
n 

y~ = t ~ m{(g:;')2+(h:;')2} 
m~O 

and 

n 
= ~ {n(n+1)((2n+1)-tm}{(g:;')2+(h:;')2}. 

m~O 
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In evaluating this last integral we have also made use of the differential equation 
satisfied by P:;'. A simple addition gives us 

_ n 

T~ = (n+1) ~ {(g:;')2+(h:;')2}. 
m~O 

Similar equations to the above have been listed by Lowes (1966). 

TABLE 2 
-

X., Y n, AND Tn IN Y UNITS AND n!Mn IN y(EARTH RADII)nH 

n=l 2 3 4 5 6 7 8 

Xn 24989 3550 2944 1872 729 379 219 59 

Yn 4352 2988 2223 lO43 498 371 U8 74 

Tn 43934 7336 5635 3214 1310 781 364 138 

n!Mn 31066 4888 4122 2553 976 900 482 214 

Some interesting relationships between the r.m.s. values can be drawn from 
these equations. For instance, the r.m.s. vertical intensity Zn = (z1)t, the r.m.s. 
horizontal intensity lin = (X~+y~)t, and the r.m.s. total intensity 1\ = (T~)l 
bear constant ratios to each other, independent of the field anomalies and depending 
only on the order of the multipole. Specifically 

Zn: lin: Tn = y'(n+1) : y'n: y'(2n+1). 

Thus the r.m.s. vertical field is always at least slightly greater than the r.m.s. 
horizontal field and knowledge of anyone of V n = (V~)t, Zn, lin, or Tn is sufficient 
to determine the others. 

The values of Xn = (X~)t, Yn = (y~)t, Tn, and n!Mn, are given in Table 2. 
The dipole is seen to be by far the most important multipole. Indeed, the total 
magnetostatic energy, exterior to the Earth, associated with all the other multipoles, 

00 _ _ 

namely t ~ T~((2n+1), amounts to less than 3% of the dipole's energy iTi. 
n~2 
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VII. SOLUTION OF EQUATIONS 

In previous attempts to solve the multipole problem of order n the authors 
generally have been forced in the end to find the solutions to a set of 2n+1 nonlinear 
equations of degree n+1, the nonlinearity being due to products of Mn and one 
component taken from each of the unit vectors Un; (i = 1, ... , n), supplemented 
by the n equations Un!' Un! = l. 

Zolotov (1966) has made use of Sylvester's (1909) theory and has reduced 
the problem to that of solving two polynomial equations of degree 2n. Like the 
other techniques this is also very awkward to apply for n greater than about five. 
In the method of the present paper none of the difficulties associated with the 
nonlinearity arise since equations (6) are essentially of degree two only. Another 
advantage is that nowhere are the explicit forms for the spherical harmonics required 
to be known. The method of solving equations (5) and (6) is briefly as follows. 

It is easily seen that each term on the left-hand side of equation (5), if written 
out in full by making use of the recurrence relations (6), contains as a factor either 
U nl , Vnl , or W nl . Hence, by removing the restriction that Unl be a unit vector and 
letting it have length M n , equations (5) can be rewritten 

m =0,1, .. . ,n. 

Then equations (6), with k = n-1, namely 

2h':, = unn{ar;: b':,.::} -fir;: br;:~l}+vnn{(l +Oml) ar;:ar;:.::-l +fir;:ar;:~l}+2wnn yr;:b:i'-I' 

can be regarded as a set of 2n+1 equations of degree two in the 2n+2 unknowns 
a:i'-l> br;:-l> U nn' Vnn' and W nn, and the last one can be eliminated through Unn'Unn = 1. 

If any guess is made for the axis U nn the above equations, with m #- n, become 
2n-1 linear equations in the 2n-1 unknowns ar;:-I, b:i'-I and this system is easily 
inverted by any of the standard methods to yield a self-consistent set of initial 
values. By using this technique it is only necessary to make guesses for two of 
the 2n+1 unknowns and one then obtains 2n+1 values that satisfy all but two of 
the 2n+1 equations. These values can be used to start a Newton-Raphson iteration 
on the full set of 2n+1 equations. This type of iteration scheme was found to 
converge extremely quickly with apparently any initial guess for the axis. The 
"reduced Gaussian coefficients" ar;:-I and br;:-I are then used in the left-hand sides 
of (6), with k = n-2, and the preceding method is repeated with a guess for un•n- I ' 

This process is continued until the final set of equations "to be solved" (equations (6) 
with k = 0) are U nl = aL Vnl = bL and W nl = a~. In practice, the geographic polar 
axis was used for all initial guesses and this generated the multipoles in order of 
increasing distance from the geographic pole. 

Using 
(7) 

we can easily reconvert Unl to a unit vector to complete the analysis. The resulting 
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poles (enj , cf>nt) are given in Table 3. Equation (7) is interesting since it describes M n 

as if it were the strength of an ordinary dipole whose axis coincided with one of the 
multipole axes. 

A fifth-order test deck was run consisting of arbitrarily chosen numbers as 
data and initial guesses that reproduced these data with errors as large as 100000%. 
In seven iterations the first axis was obtained and all errors were less than 0 ·01 %, 

TABLE 3 

POLES (8nb q,n') TO NEAREST TENTH OF A DEGREE 

n i =1 2 3 4 5 6 7 8 

8 168·6 
q, 110·3 

2 8 22·9 105·0 
q, 32·8 332·0 

3 8 20·7 58·5 63·5 
q, 344·7 140·8 224·3 

4 8 24·1 36·0 56·5 67·8 
q, 108·1 218·3 307·1 42·5 

5 8 16'5 43·0 49·4 63·2 90·6 
q, 270·4 348·5 189·5 51·3 354·0 

6 8 29·4 40·1 38·8 73·0 80·7 93·2 
q, 248·2 131·0 2·1 51·0 120·4 357·9 

7 8 17·6 39·6 51·5 54·8 58·6 64·7 65·4 
q, 348·4 158·8 311·7 17·3 201·1 95·8 238·6 

8 8 25·5 31·5 60·8 61·7 69·1 70·4 79·0 96·3 
q, 326·7 197·9 182·8 34·5 93·7 227·3 358·1 306·5 

which illustrates the speed at which multipole analysis can now be carried out. 
Thus we have at our disposal a very rapid and interesting means of transforming 
a series of spherical harmonics under change of polar axis. 

In a following paper (Multipole analysis. II) the secular variation of the 
geomagnetic multipoles will be discussed. 
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