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Summary 

The pulsational properties of a sequence of massive stars have been investi· 
gated in this paper. The second· order approximation to the equation of motion 
governing the adiabatic radial oscillations of these stars has been determined allowing 
for the variation of the radiation pressure throughout the star. In each case the 
form of the radial velocity curve at the surface of the star has been established 
taking into account the influence of higher modes of oscillation. 

1. INTRODUCTION 

This investigation into the pUlsational properties of massive stars, with any 
uniform composition, has been based on a sequence of four stellar models .-I( = 10, 
15, 20, and 30, where 

/L being the mean molecular weight of the stellar material. These models were 
initially constructed by Van der Borght (1964a) .to study the evolution of massive 
stars. Radiation pressure has been taken into account fully with electron scattering 
as the main source 01 opacity: 

K = 0·2004(1+X) , 

where X is the abundance of hydrogen. Furthermore, if f3 defines the ratio of the gas 
pressure to the total pressure we have 

for the adiabatic exponent in the presence of radiation. Table 1 gives the range of f3 
throughout the star in each case (Van der Borght 1964a). These stellar models have 
provided the equilibrium values of the pressure p, the density p, the mass M(r) 
contained within· a sphere of radius r, as well as the values of g and f3 throughout 
the star. 

In this paper we consider the anharmonic radial pulsations of these models 
and determine the radial velocity curve at the surface of the star when the variation 
of the radiation pressure throughout the star is taken into account. In addition, 
having taken a sequence of models with different mass, yet of similar chemical 
composition, we have been able to form comparative conclusions about the effect of 
increasing mass, as well as observing the effect of including higher modes of oscillation, 
on the form of the radial velocity curve. The pulsational stability of these models 
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has also been investigated and will be the subject of a later study concerned with the 
effect of including the nonadiabatic terms in the equation of motion. 

An unexpected facet of stellar pulsations was encountered with the massive 
star of.L = 20 when resonance was established between the first and second modes 
of oscillation. 

TABLE 1 

VARIATION OF fl 
gas pressure 

fl= total pressure 

fl fl 
vi Surface Centre vi Surface Centre 

lO 0·904 0·794 20 0·790 0·654 
15 0·843 0·714 30 0·706 0·571 

II. LINEAR EQUATION 

To establish the exact form of the radial velocity curve of a pulsating star 
it is first necessary to determine the solution of the equation of motion governing 
the pulsations. However, for the stellar models under consideration in this paper, 
no general solution of this partial differential equation can be established, and 
accordingly we have introduced an expansion involving the eigenfunctions of the 
linear problem as a method of solution for this equation. Hence as a first step we 
consider the linear problem and derive the eigenfunctions for the respective stellar 
models. 

The linear differential equations governing small radial adiabatic pulsations 
may be written in the form (Schwarzschild and Harm 1959) 

(1) 

X.!(8P) = {8P +(4+wIlX3)~}eGM(r) 
dxp p qrpRx' (2) 

where 8r and 8p are the amplitudes of the pulsations in position and pressure with. 
8rjr and 8pjp defining the relative amplitudes respectively. In these equations 
p, p, and r refer to the equilibrium values of pressure, density, and radius respectively, 
R is the radius of the star, and the nondimensional variables x and q, together with 
wI, have been introduced such that 

and 

The boundary conditions associated with equations (1) and (2) require 8r = 0 at 
the centre for r = 0, and 8p = 0 at the surface for r = R. These conditions arise 
from the physical requirements that the Lagrangian displacement and the 
Lagrangian variation in pressure should be zero at the centre and surface respectively. 
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The solution of the eigenvalue problem, represented by equations (1) and (2) 
subject to the above boundary conditions, was undertaken using the method given 
by Van der Borght (1964b). Table 2 gives for each stellar model the first six eigen
values Wk' with WI corresponding to the fundamental mode of oscillation. Furthermore, 
the associated eigenfunctions 7Jk = STIT together with their first derivatives 7J~ = 
d7Jkldx were derived and tabulated in normalized form for the later calculation of 
the coefficients 0li.k as detailed in the next section. 

Model 
.At WI 

10 2·0507 
15 1·8657 
20 1·7457 
30 1'5971 

TABLE 2 

EIGENVALUES FOR FIRST SIX MODES OF OSCILLATION 

3·6487 
3·5699 
3·5187 
3·4525 

4·9764 
4·8924 
4·8358 
4·7602 

Mode 

6·2587 
6·1628 
6·0976 
6·0125 

III. NONLINEAR RADIAL OSCILLATIONS 

7'5160 
7·4069 
7·3343 
7·2430 

8·7563 
8·6355 
8·5572 
8·4604 

From the basic Lagrangian equations, as given by Ledoux and Walraven 
(1958), the equation of motion for radial adiabatic oscillations can be written in 
the form 

(3) 

where the zero subscript indicates the equilibrium value. 

Substituting 
(4) 

into equation (3) and using primes to denote differentiation with respect to To, 
it follows that 

Neglecting third and higher order terms of ~ on expansion, and recalling that rl 

varies with To, we obtain 

Po To ~:~ = ToPOrlg" +(por~ To +4por l -YoporITo)f +(4goPo +3Por~ -3YoPOr l ), 

-(9POrIr~ +¥por~ -!uopori +!uOPOrl +2yoPo)'S 

-(6por! r l To -pori. To +12Porf -4porl -3YoporfTo +YopoTorl),f 

-(3poTorr -poTorl)'~" 

-(pori.rl T~+lpori. T~ +4porfTo +2pOr l To -IYoporfT~ -WoPOrl ro)f2 
(5) 
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The eigenfunctions 'l7i(rO) ofthe linear problem have been introduced by adopting 
a solution of the form 

n 
g = ~ 'l7i(r 0) qi(t) . 

i=1 
(6) 

Noting that the 'l7i(rO) determined in Section II satisfy the orthogonality conditions 

I: por3'l7i'l7j dro = ° if i =/=j, (7) 

and taking n = 6, that is, considering the first six modes of oscillation, we now 
proceed to establish the differential equations that will give the q's as functions 
of time. 

On substitution of (6) into (5) the linear terms in g on the right-hand side of 
(5) reduce to 

6 

- ~ arporo'l7iqi 
i=1 

when an alternative form of the linear problem 

'l7;+(~ + r~ _goPo)'l7;+(arpo + 3r~ _ 3goPo+ 4goPo )'l7i = 0, (8) 
ro r l Po r l Po rOrl ropo rOPOr l 

where at = wrGMfR3, is taken into account. 

Following this substitution we multiply the resulting equation successively by 

k=I,2, ... ,6 

and then integrate over the volume of the star, observing that this procedure enables 
us to apply the orthogonality conditions (7). Finally, by writing T = a1 t for the 
time variable, and with x = rfR, the resulting differential equations take the form 

k = 1,2, ... ,6, 

where 

and 

0ii,/, = 1-1[J~ {2r~(9rl+lnX2-(9rr-9rl-4l:~}PX'l7i'l7j'l7" dx 

+ I: {r~X2(6rl-1)-rl(I-3rl)( 4X- fi:) }pX2('l7i'l7~ +'l7;'l7j)'l7" dx 

+ I: r 1(3r1 -1)pX4('l7I'l7; +'l7;'l7jl'l7" dx 

II { r' 2 r 1) r (Gm(r1 +1) 4 (2r I))} - 3 " dx + 0 2 1 X ( 1 +2 - 1 £ill - x 1 + px 'l7i 'l7j 'l7" 

+ s: r 1(r1+1)pX5('l7i'l7; +'l7;'l7il'l7" dx]((1+8DI"r
1

, 

8} being the Kronecker delta. 

(9) 
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Moreover, we have introduced the new variables p, t, and in as tabulated in 
Van der Borght (1964a), which enables us to evaluate the coefficients of the six 
differential equations (9) directly from the data provided by the stellar models. 

TABLE 3 

VALUES OF COEFFICIENTS a~/a~ AND C'f.k OCCUBRING IN EQUATIONS (9) FOR SIX MODES OF 

OSCILLATION 

i,j 

1,1 
1,2 
1,3 
1,4 
1,5 
1,6 

2,2 
2,3 
2,4 
2,5 
2,6 

3,3 
3,4 
3,5 
3,6 

4,4 
4,5 
4,6 

5,5 
5,6 

6,6 

For the model J( = 20 

k = 1 2 3 4 5 6 

1·0000 
4·0629 

7·6736 
12·2005 

17·6513 
24·0284 

C'f.k 
3·3194 -14·6495 31·7457 -49·9432 57·1571 -47·4572 

-0·2103 -0·5776 -5·6690 4·4219 -6 ·1191 2 ·4007 
0·0215 -1·2276 -2·9899 -6·4225 0·7110 -5,9993 

-0·0065 -0,0940 -2'8324 -6·1965 -8·8701 -5·1163 
-0·0012 -0,0880 -0·6617 -5·5409 -11·3863 -14·4451 

0·0010 -0·0670 -0·5849 -2·7893 -11·2610 -19·9250 

-0·0087 -2·2999 -8·4981 -7·8841 -3·3469 -8·2862 
-0·0108 -1·0348 -7·9207 -16·3942 -14·5574 -14·9762 
-0·0014 -0·3322 -4· 0605 -17 ·1232 -28, 9952 -30·5427 
-0·0015 -0·1522 -1·9184 -11·6683 -34·4221 -51·4463 
-0' 0015 -0 ·1616 -1·6132 -8,8369 -31·4068 -64·8958 

-0·0035 -0·8571 -7·0089 -21·5485 -32·2827 -34·6511 
-0·0034 -0·4662 -4·9857 -20·6151 -45·5674 -62·5901 
-0·0021 -0·2798 -3·3428 -17·7354 -50·9637 -88·7908 
-0·0026 -0·2836 -2·9855 -16·2186 -53·3670 -108·0211 

-0·0028 -0·4907 -4·9584 -22·1682 -57·6872 -96·4446 
-0·0034 -0·4340 -4·6840 -23·0341 -67·6441 -127·7014 
-0,0039 -0·4527 -4·7801 -24·6854 -77·5751 -157·4310 

-0·0043 -0,5588 -5·7257 -28·1125 -85·0959 -168·9295 
-0·0057 -0·6591 -6·7403 -33·5582 -104·1346 -213·0241 

-0·0076 -0,8699 -8·6996 -42·8874 -133·1334 -274·7825 

Indeed one can readily verify the following relationships between the two sets of 
variables 

Mo{3p 
p = R3f!lltp. 2 ' 

M5P 
p = R4p.4' 

M(r) = in(MO/p.2) , and 

where the mean molecular weight p. = (2X+O·75 Y +O·5Z)-1. Mter making 
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allowance for the separate formulation of df3/dx in the core and envelope (Van der 
Borght 1964a), that is, 
in the convective core 

df3 Gf3(I-f3) if/, 3f32 
<Ix = 9tx2 T32-24fJ-3fJ2 

and in the radiative envelope 

df3 = ~f3(I-f3) 1 ( /C/L2L _ -G) 
<Ix 9t t x2 47rc(I-f3)M 0 m , 

we computed values of r~ throughout the star using 

dr1 (21f3a -48f3 +32) dfJ 
dx = 3(8-7fJ)2 dx' 

To calculate "7; we expressed (8) in terms of the new variables and then used 
the values of "71 and "7; as determined previously from (1) and (2). 

The coefficients 0li.k of the differential equations (9) have been tabulated in 
Table 3 for the star Jt = 20 only, as the coefficients determined in the case of the 
other three stars under consideration follow a similar pattern. We should remark 
at this stage that the radius R of the star has been eliminated from these calculations 
and that whereas the quantities X, Y, and Z, determining the uniform composition 
of the star, are not directly involved in the calculations they do enter implicitly 
through the quantity Jt. 

IV. NUMERICAL SOLUTIONS .AND RADIAL VELOCITY CURVES 

The system of simultaneous second-order differential equations (9) has been 
solved by numerical integration for each stellar model. The following initial values 
were adopted 

for k = 1,2, ... ,6, 

and an iterative procedure was used to determine the values of 

k = 2,3, ... ,6, 

under the requirement that the solutions for the second and higher modes of 
oscillation should be periodic and have the same period as the first mode ql(T). 

As evidenced in Table 4, which lists the values of qk(O) as determined above, 
a factor that no doubt assisted in the simultaneous solution of the differential 
equations is the relative independence of the qk(O) values when additional higher 
modes are taken into account. 

As mentioned in Section I, a resonance interaction was encountered between 
the first and second modes of oscillation for the star Jt = 20. From Table 3 it is 
seen that 

~/01 = c.o~/c.oi = 4·0629 

and some significance can apparently be placed on the value of this ratio. 
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The radial velocity curve at the surface of the star is determined, for one period 
of 7", by 

as the 'lJ,Ax) have been normalized at the surface x = 1. 

The skewness of the radial velocity curve is established by the factor K, the 
ratio of the rise of the radial velocity from minimum to maximum to the total period, 
and can be considered to some extent as a measure of the effect of including the 

TABLE 4 

RESULTS OF NUMERICAL COMPUTATIONS 

Values are given of qk(O) adopted to ensure periodicity, skewness of the radial velocity curve K, 
and period of oscillation T 

No. of 
ql(O) q.(O) qa(O) q.(O) q.(O) q.(O) K 

Modes 
T 

.,I( = 10 
First 

4 0·0300 -0,0036 -0·0048 0·0044 0·302 6·290 
5 0·0300 -0·0036 -0·0048 0·0040 -0·0030 0·302 6·290 
6 0·0300 -0·0036 -0·0048 0·0040 -0·0030 0·0025 0·310 6·290 

.,I( = 15 

4 0·0300 -0·0158 -0·0048 0·0046 0·254 6·300 
5 0·0300 -0·0159 -0·0046 0·0043 -0·0121 0·159 6·300 
6 0·0300 -0·0158 -0·0047 0·0044 -0·0083 0·0025 0·159 6·300 

.,I( = 20 

4 0·0300 0·0632 -0·0078 0·0009 0·671 6·335 
5 0·0300 0·0632 -0·0079 0·0010 0·0011 0·679 6·335 
6 0·0300 0·0641 -0·0077 0·0012 0·0074 0·0077 0·758 6·335 

.,I( = 30 

4 0·0300 0·0146 -0·0036 0·0046 0·717 6·350 
5 0·0300 0·0146 -0·0043 0·0046 -0·0036 0·701 6'350 
6 0·0300 0·0146 -0·0051 0·0047 -0·0034 0·0027 0·693 6·350 

nonlinear terms in the equation of motion. We would expect the value of K from 
the linear theory to be one-half. Values of K, taking into account the first four, five, 
and six modes of oscillation, are tabulated in Table 4. 

The main significance of these results is that, overall, the inclusion of higher 
modes of oscillation has relatively little effect on the value of K and the general 
shape of the radial velocity curve, whereas an increase in mass (and radiation 
pressure) produces an appreciable change in both the skewness and the form of the 
radial velocity curve. This trend is illustrated in Figure 1. There is also an increase 
in the period of oscillation corresponding to an increase in mass; for the star 
Jt = lO we have the value of 7" = 6·29 for one period, and for the star Jt = 30, 
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T = 6· 35, as compared with the linear case where T = 6 ·28 for one period. Values 
of the period T are also given in Table 4. 
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Fig. l.--Radial velocity curves determined at the surface of the star taking into 
account the influence of the first four, five, and six modes of oscillation for (a) Jt = 10, 

(b) Jt = 15, (0) Jt = 20, and (d) Jt = 30. 

Finally, it should be stressed that these results apply to stars having any 
uniform composition. However, if we were to consider a "normal" composition, 
say X = 0'70, Y = 0'27, Z = 0·03, then these results would equally apply to 
stars in the mass range 26·2 M 0 to 78·5 M 0' 
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