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Summary 

The energy of interaction of two univalent ions of opposite charge with 
overlapping hydration shells and in an aqueous medium is discussed in terms of 
a truncated spherical cavity model. The general trend of the effective dielectric 
constant considered as a function of the separation between the ion centres is 
found to be in agreement with some earlier results on a spheroidal cavity model. 
The present investigation has the advantage that the boundary of the ion pair 

, varies continuously with separation and hence that no matching of a two· sphere 
model onto a spherical cavity model is requiI:ed. It is found that the effective 
dielectric constant has a maxiInum value at very small ion overlap. 

I. INTRODUCTION 

A monovalent ion in an aqueous medium consists of a central charge surrounded 
by layers of water molecules in thermal motion. In the first hydration or coordination 
shell these molecules are strongly bound to the ion centre, while in subsequent layers 
the water molecules are more or less free to move about. Frank and Wen (1957) 
have discussed this idea in more detail. For a single ion many authors have introduced 
a spherical hydration shell of oriented water molecules and have treated the water 
outside this shell as a continuous dielectric medium. In one such model (Bernal and 
Fowler 1933; Eley and Evans 1938; Everett and Coulson 1940;, Verwey 1941, 1942; 
Rowlinson 1951; Buckingham 1957; Vaslow 1963) the molecular configuration of 
the water inside the hydration shell is considered and the electrical and short-range 
interactions between the ions and these molecules are examined in detail. In a 
simplified variant of this model (Born 1920; Webb 1926; Latimer, Pitzer, and 
Slansky 1939; Noyes 1962, see also 1964) the inner shell is treated as a spherical 
cavity of low dielectric constant to account for the dielectric saturation that is due 
to, a very intense electric field. For a pair of ions the situation is much more 
complicated; nevertheless, Levine and Wrigley (1957), Levine and Bell (1962), 
and Levine and Rosenthal (1966) have developed several two-sphere models for 
non-overlapping hydration shells. (These papers will henceforth be referred to as 
L.W., L.B., and L.R. respectively.) At small separations, where the coordin~tion 
shell overlaps, Levine and Rosenthal used a spheroidal cavity model but they found 
considerable difficulty in treating the transition between the non-overlapping and 
overlapping stages. 
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It is the purpose of the present paper to extend the work of Levine and 
co-authors to the case of overlapping hydration shells by using a truncated spheres 
model in which the radius of the spheres increases with decrease in the separation 
between the ion centres in such a way that the volume of the two cavities remains 
constant. With this model there is no difficulty associated with the abrupt change 
in the shape of the cavity. Several variations are considered but calculations are only 
carried out for the K + and F- ions in water at 25°0. 

In problems of electrostatics and hydrodynamics relating to two truncated 
spheres, so-called peripolar coordinates were found useful by a number of authors, 
including Snow (1949), Morse and Feshbach (1953), Payne and Pell (1960), Pell and 
Payne (1960a, 1960b), Lebedev (1965), and Ranger (1965). However, in the present 
paper these coordinates are not used because of the different nature of the conditions 
at the boundary of the cavity. We therefore use spherical harmonic expansions and, 
by adopting a least-squares technique, find that a finite number of terms « 8) 
in such an expansion satisfies the appropriate boundary conditions to a high degree 
of accuracy provided that the separation between the ions is not less than about 
90% of the diameter of a single ion complex. (For brevity an ion with its attached 
water molecules will be referred to as an ion complex.) Actually the method used 
here leads to an infinite set of equations for which it is important to prove the 
existence of a unique solution. The validity of the expansions can be proved as 
in Mitra (1944). 

Now one purpose of the present investigation is to confirm the general trend 
of the effective dielectric constant "err defined by the relation 

(1) 

where V(R) is the interaction energy corresponding to the separation R between the 
ion centres. In particular, we show that "eff has a maximum at very small overlap. 
An explanation is also given for the large discontinuity in the electric field at the 
ion centres, as found in the L.R. spheroidal cavity model at the transition stage from 
one model to the other. In view of the complexity of the problem, we shall begin 
with the simplified model of two point charges at the centre of the truncated spheres, 
which are treated as a continuous medium of low dielectric constant. This is an 
extension to overlapping spheres of the model considered in L.B. The next step 
is to place the two ions in a cavity of dielectric constant 1, containing the appropriate 
distribution of water molecules (see L.W. for this approach). We find that the 
determination of the interaction energy with such a distribution is very difficult and, 
since this will be considered in a following paper, only some preliminary results 
are given here. 

II. POTENTIAL PROBLEMS FOR Two INTERSECTING SPHERES 

In order to estimate the interaction energy of two ion complexes in close 
proximity we can use as a model two intersecting spheres, 81 containing the positive 
charge +e and 8 2 containing the negative charge -e, of equal radius a and dielectric 
constant ,,' (which mayor may not be unity). Each sphere represents an ion and its 
attached water dipoles and encloses the charge distribution which, for the sake of 
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simplicity, is taken to be symmetrical about the line of centres and which lies at 
the centre of the sphere to which it belongs. The whole system is embedded in a 
continuous medium of dielectric constant £. 

The potential inside the dielectric spheres is harmonic except at those points 
where there is an electric charge. We shall assume that the charge distribution is 
confined to two spherical neighbourhoods each of radius b (b < min(a, !R)) centred 
at 0 1 and O2, for then the potential outside these neighbourhoods can be represented 
by a set of multipoles lying at the centres of the spheres so that the potential inside 
the overlapping spheres can be written in the form 

(2) 

where 'PH is harmonic inside the whole region bounded by the overlapping spheres 
and the second term on the right-hand side represents the potential due to an 
equivalent multipole distribution situated at 0 1 and O2, with (r1' 01, c/>1) and (r2' O2, c/>2) 
as the spherical polar coordinates referred to the ion centres and P n denoting the 
Legendre polynomials of order n. These coordinates are so defined that (T1' 01, c/>1) = 
(r2' O2, c/>a) for any point P on the median plane. This geometry is illustrated in Figure 1. 

Fig. I.-Model of two truncated 
spherical cavities containing 
point charges +e and -e, 
induced dipoles IL, and induced 

---t- - --z quadrupoles 9 at the centres. 
This model is taken to represent 
overlapping hydration ions. 

Since the charge distribution is antisymmetric with respect to the median 
plane perpendicular to the line joining the ion centres, it is sufficient to determine 
the potential 'PH inside one sphere Sl. Let Q be any point on the boundary of the 
two spheres with spherical polar coordinates (a, O~, c/>~) when on Sl and (a, O~, c/>~) 
when on S2. Then, using Green's theorem at any point P interior to the spheres, 
we get 

'PH(P)J= -~ f {'PHi.(!) _!O'PH}dS, 
411 8,+8, on p p on (3) 

where p = PQ and a/on denotes differentiation along the outward normal n. When 
Q is a point on the surface Sl and r1 < a, we introduce the expansion 

(4) 

with 

COS"l = cos 01 cos O~ +sin 01 sin O~ cos( c/>1 -c/>~) , 
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and, when Q is on the surface 8 2 and r2 > a, the expansion 

(5) 

with 

cos Y2 = cos O2 cos 0; +sin02 sin 0; cos( 4>2. -4>;) . 

By a well-known addition formula for the Legendre polynomials (see Hobson 1931) 
we may write the function P n( cos Yt) as a sum of terms of the type 

P~(cos 0) P~(cos 0*) cosm(4)-4>*). (6) 

On each surface 8 1 and 8 2, %n becomes %r1 an~ %r2 respectively, so that the 
final result should be axially symmetric, and, in the region r1 < a < r2, 1f'R(P) 
takes on the form 

n~o (Cnr~Pn(COSOl) +dnr2"n-l Pn(COS02)) • (7) 

On expanding each, term in (r2' O2) in terms of (r1,01) the expression (7) becomes 

(8) 

valid in the region r 1 < a < R. Here the second term is a double power series in 
(rl/R) and (a/R) and so is absolutely convergent inside the radius of convergence. 
It follows that we can interchange the order of the summation and so, with the 
aid of (2) and (8), we obtain an expression for the potential 1f'1 inside the sphere 8 1 

as a sum of a reaction field potential1f'R and a "self-potential" 1f'8. Thus 

where 

1f'R = (e/a) (Bo+ n~l Bn(rl/a)nPn(COSOl)) , 

valid in the whole interior of the sphere 8 1 and 

1f'. = (e/a) (a/e'r1 + n~l Wn(a/rl)n+1Pn(COSOl)) , 

(9) 

(10) 

(11) 

valid for b < r1 < a. Here the reaction field 1f'R. is precisely the Taylor series 
expansion of the potential inside 8 1 with a set of coefficients Bn which are related to 
the sequence of numbers cf and df of (8) and which are determined by the appropriate 
boundary conditions. On the other han,d, the self-potential1f'. is expressed in terms 
of the dimensionless quantities Wn = Pn/ean, where Pn i(l the moment of the point 
multipole of order n situated at the centre of each sphere. 

The potential outside the two spheres may be written in the form 

(12) 

where ¢So(P) is harmonic outside the two spheres. An expression for 1f'o(P) can then 
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be found by using Green's theorem once again and setting 

1 1 00 (a)n+l - = - L - Pn(cos'Y!), 
P an=o r, 

575 

(13) 

with i = 1 when Q is on 81 and i = 2 when on 8 2• On each surface 81 and 8 2, 

n is the unit inward normal and %n becomes -%r1 and -%r2 respectively. 
It follows that,. since the potential is antisymmetric with respective to the median 
plane (8m), 

1JF. _ ~(~ _~) ~ ~ A (Pn(COS81)an+l _ Pn(COS82)an+l) 
o - ~a r r + a n rn+1 rn+1 ' 

~ 1 2 n=O 1 2 
(14) 

where the constants An depend on the potential on the surface of the two spheres 
and are determined from the boundary conditions appropriate to this problem; 
namely 

with 

€oPO/or l = €' oPi /orl 

Pi = 0 } (15) 

Since the boundary conditions at the surface of the sphere 81 and on the median 
plane 8m will be used to obtain formulae involving the coefficients An, it is necessary 
to express the potential Po in terms of (rl' 81). In that case equation (14) becomes 

'P = ~(~_~)_~ ~ Amam+l 
o €a r1 r2 a m=O Rm+l 

+~n~o [A;~~:~ -C~::l + m~o (m~n)AR::::;l}](?r Pn(cos8t ), (16) 

valid for tR < r1 < R. 
We now assume that the potential inside the sphere 8 1 may be represented 

sufficiently accurately by the first N coefficients Bn of the series in equations (9)-(12) 
and that the potential outside 8 1, but near the boundary, may be represented by the 
first N coefficients An of the series in (16). This assumption seems reasonable since 
the potential must be continuous on the whole of the boundary. Now equation (10) 
shows that the contribution to the potential inside one of the spheres from the 
reaction field PH can be written as a Taylor series in r1 with coefficients that depend 
on 81. Thus, once the multipole moments of the charge distribution inside the 
spheres are known, the set of constants Bn is uniquely determined by the values of 
the potential Pi on the boundary. However, the same argument does not apply 
to the potential on the outside for there exists an expansion of the form 

(17) 

which is identically zero everywhere outside the two spheres. One such identity 
can be obtained by expressing the function r-1, where r is the radial distance 
measured from the origin 0, in terms of Legendre series in (r1,81) and subtracting 
from it a similar series in (r2' 82). In that case A: = (tR)n. At first sight it seems 
as if the non-uniqueness of the coefficients An would lead to further complications 
but, as it happens, the equations that determine the Bn (equations (20) and (21); 



576 D. K. ROSS AND S. LEVINE 

see below) do not depend on the individual values of these constants but rather on 
the potentiallJ'o and on its derivative olJ'O/orl' Hence, it is clear that the inclusion 
of terms like (17) cannot affect the determination of the set of constants B ... 
This state of affairs is verified by checking that the final result is unaltered when 
the number of terms in the series is increased from N = S to 40. 

For spheres that do not overlap we may equate the coefficients of the Legendre 
polynomials that arise when substituting equations (9)-(1l) and (16) in the boundary 
conditions (15), because these polynomials are orthogonal in the range -7T < (Jl < 7T; 

however, when there is overlap the orthogonality condition does not hold and we 
are not justified in merely equating coefficients because this would take no account 
of the last condition in (15). 

If we look at the case of small 0verlap then we might expect a least-squares 
procedure to give reasonable answers. Such an approach has the advantage that it is 
continuously connected with the non-overlap case. Suppose that the potential is 
known in the region exterior to the two spheres. We can then determine the B .. 's 
which minimize the integrals 

.11 = I (lJ'1-lJ'0)2 dSl + r lJ'r dSm (IS) 
8, ~8m 

and 

This leads to the set of simultaneous equations 

I (lJ'I-lJ'O)r~ p .. ( cos (Jl) dSl + I lJ'1 r~ p .. ( cos (Jl) dSm = 0 (20) 
8, 8m 

and 

for n = 0,1,2, .... 

For convenience we shall now define a new set of constants E .. andF .. by 
the relations 

00 

lJ'1-lJ'0 = (e/a) ~ E .. P .. (cos(Jl) (22) 
11=0 

and 
00 

olJ',,/or1-(€/€')olJ'0/or l = (e/a2) ~ F .. p .. (COS(Jl) 
11=1 

(23) 

By comparison with equations (9)-(1l) and (16) we see that 
00 

E .. = B .. +W .. +(lx)"+1/€-A .. + ~ (m~")Am(lx)m+"+1 
m=O 

(24) 

for n = 0, 1,2, ... and that 
00 

F .. = nB .. -(n+l) W .. +n(lx)"+1/€' +(n+l)A .. €/€' + ~ (m~")nAm (lx)m+"+1€/€' (25) 
m=O 

for n = 1,2,3, ... ,where we define Wo = 1/€'-1/€, Ao = 0, and x = 2a/R. Ifwe 
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substitute these expressions into (20) and (21) we obtain 

Fn=Ofor n=I,2,3, ... and Gn = 0 for n = 0,1,2, ... , (26) 
where 

with 

and 

00 

Gn = L {Emlm,n +BmJm,nx-m-n-2 + Wm Km,n xm- n- 1} , 
m~O 

fcosa. 

Im,n= -1 Pm(t)Pn(t)dt, 

fcosa. 

J m,n = P m(t) P n(t) t-m- n- 3 dt, 
-1 

fcosa. 

K - P (t) P (t) tm- n- 2 dt m.n - m n , 
-1 

if x <; 1. } Ijx, 
cOSa* = 

1, 

if x> 1, 

(27) 

(28) 

(29) 

(30) 

(31) 

In order to complete the discussion we must consider the charge distribution 
in each ion complex. We shall use the model of L.W., where it was supposed that 
there are four water molecules in each hydration shell forming a tetrahedral 
configuration. (A detailed discussion of this model is given in Section IV.) At 
infinite separation of the ion complexes the water dipoles point directly towards a 
negative ion and away from a positive ion and hence the equivalent dipole and 
quadrupole moments of the ion complexes at their centres vanish, that is, PI = 0 = P2' 
However, at finite separations, the reaction field that one ion complex and the 
surrounding dielectric medium produce inside the other ion complex will induce 
dipole and quadrupole moments. These induced dipole and quadrupole moments 
situated at 0 1 are taken as 

(32) 

where a and yare the dipole and quadrupole polarizabilities respectively and 
depend on the arrangement of the water molecules in the first hydration shell (see 
L.W. with a correction in L.R.). In nondimensional forms the induced multipole 
moments can be expressed as 

(33) 
where 

a' = aja3 , y' = yja5 • (34) 

In L.R. higher order terms in fL' and 8' were introduced to describe field gradient 
polarizabilities and hyperpolarizabilities. However, it was found that even at 
contact of the two spheres their contributions to the interaction energy was less than 
O· 01 %. Furthermore, the inclusion of such terms raises new problems, such as the loss 
of axial symmetry, and at this stage of the theory there is little point in considering 
such refinements. So if we now neglect the higher order multipole moments we 
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have a complete set of nonlinear equations in terms of the parameter x representing 
the ion separation. Once these equations have been solved for An and Bn we can 
substitute these values into the integrals (18) and (19) and so obtain an estimate of 
the accuracy of this least-squares method. In fact the second integral vanishes 
identically and the first integral is given by 

00 00 

Lll = 27Te2 ~ ~ (EmEn1m.n +BmBn Jm,n x-m- n- 2 +2Bm WnKn,mxn-m-l 
m=O n=O 

(35) 

where 

L = II P (t) P (t) tm+n- l dt m,n m n . 
eosa· 

(36) 

To solve these simultaneous equations we can use the following procedure. 
First assume that the dipole and quadrupole moments are known and then rewrite 
(27) in terms of the column matrix XI = (Bo, AI> A 2 , A 3 , ••• )' by eliminating the 
other unknown Bn's from (24) and (25). This leaves the set of linear equations 

al. l = -IO,I_l-JO,I_lx-l-l, (37) 

where 

00 + ~ (mt')(lx)m+i+1{Im,i_l(€!€' -1)+Jm,i_lx-m-l-l€!€'} (38) 
m=O 

and the y/s are determined by setting the column matrix XI equal to zero in (24) 
and (25) and then substituting into (27) once again. Hence 

where 

and 

00 

YJ+1 = ~ (E;Ir.f +B; J r.f X-r- f- 2 + WrKr,J xr- f- l ) , 
r=O 

B~ =0, 

(39) 

(40) 

(41) 

We now solve (37) by using a matrix inversion and then make use of (25) to determine 
the Bn's. This in turn enables us to calculate the induced dipole and quadrupole 
moments from equations (33). This process is repeated in order to evaluate fL' and 
8' by successive approximations. 

III. INTERACTION ENERGY FOR INTERSECTING SPHERE MODEL 

To determine the interaction energy V(R) for the ion complexes we can use a 
Giintelberg-Muller-type charging process (Kirkwood 1934), i.e. we calculate the work 
that has to be done to bring the point charges from infinity in infinitesimal increments 
to separation R, the energy needed to produce the dipole and quadrupole moments, 
and the change in the internal energy associated with their formation. 
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Now the potential at the positive charge due to the presence of the negative 
ion is given by 

P~ = lim {Pi-Ps-lim (Pi-~)) = f!,{Bo+'::(~ -!)}, (42) 
r,->-O R-HfO € r 1 a at) € € 

because the induced multipole moments must vanish at infinity. Here ao is the radius 
of the ion complex at infinite separation. If we imagine that the two ion complexes 
are charged simultaneously (i.e. that each ion centre and each multipole moment 
is charged at the same rate) and denote by the fraction A the stage in the charging 
process, then at any stage A < 1 the potential against which the ion complexes are 
being formed is AP~ and hence the difference between the work done in charging 
the ion centres at separation R and that at infinite separation is 

Ve(R) = 2 APR d(Ae) = - Bo+- -, -- . Il. e2{ a ( 1 I)} 
o a ao € € 

(43) 

To calculate the contribution to the interaction energy from the induced dipole 
moments we may consider each dipole as a doublet of length L' and moment fL = e'L' 
situated at the ion centre and pointing in the appropriate sense along the z axis. 
At any stage A the corresponding potential is again AP; and hence the energy of 
charging the dipole is obtained by contracting these charges in such a way that 
fL = e'L'. Thus 

(44) 

= e2B1 fL' /a. 
In a similar manner we can find the energy of charging the quadrupoles. This time 
we imagine three point charges e", -2e", and e" situated at distances of 0, L", 
and 2L" from the ion centres and along the z axis. Then, by contracting these charges 
in such It way that e = 2e" L"2, we obtain an expression for the energy of charging 
the quadrupole, namely 

(45) 

Finally, we have to include in the interaction energy the change in the internal 
energy associated with the formation of the dipole and quadrupole. If the reaction 
field is regarded as an external field then, according to Bottcher (1952), the work 
done by this external field when fL changes by an amount SfL and e changes by an 
amount se is 

(46) 

and, since this is equal to the work done on the internal field, it follows that the 
change in the internal energy associated with the formation of the dipole and 
quadrupole is 

-2(e2/a) I:' Bl dfL' -2(e2/a) (' B2 de' , (47) 

which, in view of equations (33), becomes -(e2/a)(B1 fL' +B2 e'). The interaction 
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energy is now obtained by adding the above-mentioned contributions. It is given by 

(48) 

We note that the interaction energy does not contain terms linear in the field or 
field gradient. A similar result, but involving only the dipole moment, was obtained 
by Mandel and Mazur (1958). 

In the model of the ion complexes to be considered here we shall assume that 
the ion complexes have radius ao as long as their coordination shells do not overlap; 
however, in order that the radius of the complexes may change with separation 
in the case of overlap (e.g. so as to keep the volume of the two cavities constant), 
we shall define a volume factor f by the relation 

47TaEfJ3 = 7T f~~ (a2-t2) dt. (49) 

It will be found convenient to make RJ2a the subject of this equation, in which case 

RJ2a = {c+c(l-c}!}l +{c-c(l-c}!}! , (50) 
with 

(51) 

IV. INDUCED MULTIPOLE MOMENTS FOR A TETRAHEDRAL CONFIGURATION 

In this work we are primarily interested in potassium fluoride solution where 
the K + and F- ions have equal radius ri = 1·33 A and where, for the sake of 
simplicity, we choose them to have the same polarizability UI = 0 ·93 X 10-24 cm3 

(the mean of their actual polarizabilities). For the water molecule we take rw = 
1·38 A, U W = 1·68 X 10-24 cm3, and the permanent dipole moment fLw = 1·84 debye. 
An upper estimate for the radius of the ion complex ao is ri+2rW = 4·09 A while, 
for the case of a tetrahedral water structure, a lower estimate is 3 ·09 A, which is the 
radius of the sphere touching the nearest molecules that are not in contact with 
the ion. We shall use the mean value ao = 3·59 A to be consistent with the papers 
of Levine and co-authors. 

To begin we can follow the method of L.W. and imagine that the ion complexes 
lie in a cavity (or two cavities if R > 7 ·18 A) that contains four water molecules 
per ion. Each arrangement of four water molecules is assumed to be situated at the 
alternate vertices of a cube of sides 2(ri +r w}J yl3 = 3 ·13 A with the ion at the 
centre. For this model the distance of nearest approach of the ion centres is 2· 86 A. 
At ion separations less than 2(rl +rw } = 5·42 A the Taylor series expansions (9}-(11) 
for the potential inside the cavity are no longer valid and so there is no point in 
pushing this model to smaller separations. In any case water molecules cannot be 
treated as point dipoles when the potential at intermolecular distances is calculated. 

The polarizabilities of the ion complexes are now estimated by neglecting 
the interaction of adjacent water molecules inside the same hydration shell and 
determining the orientation of the water dipoles so as to make the potential energy 
of the water dipoles in the field of the other ion and of the reaction field a minimum. 
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The dipole moment of the ion complex is then given by 

(52) 

with 
(53) 

where aw and <11 are the polarizabilities of the water molecule and the ion respectively, 
(J1 is the angle between a typical water dipole of the ion complex 0 1 and the z axis 
at infinite separation, and the summation is carrIed out over the positions of the 
attached water molecules. This is only the leading approximation since higher 
order terms in the reaction field are neglected and the rotation of the water dipoles 
from the line joining the centre of the water molecule to the centre of the ion to 
which it belongs is assumed to be small. Thus, if (J1 becomes ((J1 -f3) due to the reaction 
field at finite separation R, we need 1f31 ~ 1. Of course, this assumption is not valid 
for small ion separations R, in which case the dipole-dipole interactions become 
more significant and the region between the ions has a coordination rather like that 
for a divalent ion. 

Now a feature of this model is that ~ (1- COS2(J1) = 8/3 is independent of the 
positions of the water molecules. Similarly, L.R. showed that for an arrangement 
of six water molecules placed in an octahedral structure the same result holds 
except that the 4 in equation (52) is replaced by a 6 and that ~ (1- COS2(J1) = 4. 
No calculations on this model are included here since their general characteristics 
are the same as that of the four-coordinated ions. 

The quadrupole moments of the tetrahedral and octahedral structures were 
calculated by L.R. They obtained an expression for the quadrupole polarizability; 
namely 

y = tmaw(rl+rw)2+2 . 25{fLw(rl+rw)4/e} ~ (COS2(J1 - COS4(J1)' (54) 

with ~ (COS2(J1 - COS4(J1) = 2m/9 when the coordination number m is 4 or 6. The 
first term in (54) is the contribution to the quadrupole moment from the induced 
dipoles in the attached water molecules while the second term is due to the change 
in the orientation of the water dipoles of fixed moment fLw, caused by the reaction 
field. The resu1ts of the calculations on the tetrahedral structure are shown in 
Table 1.' 

These data show that "err has a maximum at very small overlap and that it is 
there greater than the dielectric constant of the aqueous medium. This is no cause 
for concern since ee!! is only a dielectric constant by convention. At large separations 
it is clear that the value of ee!r approaches that of the aqueous medium" while at 
very small separations it tends to the internal molecular dielectric constant ,,'. 

The calculations also show that the induced dipole and quadrupole moments 
are very small when the coordination shells do not overlap and that these moments 
increase rapidly as the separation between the ions decreases from the contact 
value R = 2ao. The smallness of the induced multipole moments at. larger separations 
is related to the shielding effect of one ion complex from the other by the aqueous 
medium. Thus, as "'I,, --+ 00 the ions behave like conducting spheres and so cannot 
influence each other or be affected by the surrounding aqueous medium. On the 
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other hand, once overlap occurs the amount of shielding is much reduced and the 
ions interact with each other much more strongly. This illustrates the importance 
of choosing a realistic model to describe the ion complexes, particularly in the case 
where overlap of the coordination shells begins. A further point to note is that 
the positions of the attached water molecules will have to be known even at moderate 
overlap because there will be a significant contribution to the potential energy from 
the dipole-dipole interactions of water molecules that belong to the same ion complex. 
Furthermore, the thermal motions of the water molecules will be increasingly 
important because there will now be certain geometrical constraints to consider. 

TABLE 1 

EFFECTIVE DIELECTRIC CONSTANT (Eerr), INDUCED DIPOLE (J-L) AND QUADRUPOLE (e) MOMENTS, 

AND FIELD INTENSITY (E) FOR THE TWO SPHERES CAVITY MODEL (E' = 1) WITH EIGHT ATTACHED 

WATER MOLECULES PLACED IN TWO TETRAHEDRAL CONFIGURATIONS 

aO = 3·59 A, a = 15·15xl0-24 em3, y = 66·01 X 10-40 em5• For N = 8,20 the ratio <l1/e2BO 
has the maximum value 10-22 when R/2ao ;;' 1 and ranges from lO-5 at R/2ao = 1 to lO-4 at 

R/2ao = 0·9 

R/2ao J-L 19 X 102s Ex lO-s 
€eff (debye) (e.s.u.) (e.s.u.) 

1·60 79·61 0·0149 0'OlO6 O'OOlO 
1·40 80·34 0·0191 0·0153 0·0013 
1·20 81·61 0·0250 0·0226 0·0017 
1·00 84·23 0·0332 0·0332 0·0022 
0·99 83 ·16 0·0363 0·0427 0·0024 
0·98 80·18 0·0449 0·0713 0·0030 
0·96 69·35 0·0819 0·1948 0·0054 
0·94 55·47 0·1486 0·4166 0·0098 
0·92 42·24 0·2457 0·7390 0·0162 
0·90 31·42 0·3773 1·1763 0·0249 

These will have the effect of introducing into the cavity permanent dipole, quadrupole, 
and other moments associated with these molecules. Moreover, at small separations 
the water molecules can no longer be treated as point dipoles and a m~ch more 
detailed knowledge of the charge distribution of these molecules is needed than is 
at present available. The above results show that the field intensity Eat each 
ion centre increases very quickly with increase in the amount of overlap. 

There are certainly quite a number of problems associated with choosing a 
detailed molecular structure for the ion complexes. Thus, as an alternative, we can 
follow Marcus (1963a, 1963b) and separate the "electronic" polarizability of an ion 
complex from its "orientation" polarizability, which is due to the permanent charge 
distribution of the two ions and their attached water molecules. We imagine that 
the point charges and multipoles are placed at the ion centres in a dielectric medium 
for which €' = n2, where n is its optical refractive index. However, since no data 
are available for this problem we follow Kirkwood and Westheimer (1938) and 
Hill (1944), who chose a small value for this dielectric constant to account for the 
dielectric saturation associated with the strong field between the ions. We shall 
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use 1/ = 2·5 and halve the polarizabilities a and y. Table 2 shows the results of 
this calculation. 

In order to make a comparison of the above two sets of calculations it is found 
useful to assign the value 5 to the dielectric constant E' and thereby replace the 
induced multipole moments altogether. These results are also shown in Table 2. 

We see from the calculations that, when the ion complexes are treated as a 
cavity (E' = 1) containing the charge distribution associated with the coordination 
water molecules, the effective dielectric constant is found to change rather abruptly 
near contact separation. On the other hand, if we use the dielectric spheres model 
(E' = 5) then this change is much more gradual. Of course, it is unlikely that such 

TABLE 2 

VARIATION IN EFFECTIVE DIELECTRIC CONSTANT ('o,el AND FIELD INTENSITY (E), AT THE ION 

CENTRES, WITH IONIC SEPARATION FOR THE CASES .' = 5 WITH f' = @ = 0 AND .' = 2·5 WITH 

POLARIZABILITIES HALF THE PREVIOUS VALUES 

For N = 8,20 and .' = 2·5 or 5 the ratio <11/e2BO has the maximum value 10-23 when R/2ao )< 

and ranges from lO-7 at R/2ao = 1 to lO-5 at R/2ao = 0·9 

.' = 5 .' = 2·5 

R/2ao 
Ex 10-6 Ex lO-6 f' @ X 10.6 

Eetf (e.s.u.) Eef! (e.s.u.) (debye) (e.s.u.) 

1·60 79'52 0·0007 79·56 0·0008 0·0060 0·0046 
1·40 80·17 0·0008 80·23 O'OOlO 0·0076 0·0066 
1·20 81·38 0·001l 81·48 0·0013 O'OlOO 0·0098 
1·00 83·78 0·0015 83·95 0·0018 0·0133 0·0145 
0·99 83·73 0·0916 83·64 0·0018 0·0139 0·0163 
0·98 83·22 0·0016 82·48 0·0020 0·0153 0·0211 
0·96 80·76 0·0019 77·60 0·0028 0·0209 0·0401 
0·94 76·46 0·0025 69·88 0·0041 0·0307 0·0733 
0·92 70·61 0·0033 60·50 0·0060 0·0455 0·1228 
0·90 63'71 0·0045 50·79 0·0088 0·0664 0·1914 

a crude macroscopic theory of dielectric saturation is applicable to the water 
molecules in the first coordination shell, but, by a comparison of these results with 
the third model (E' = 2 '5), the trends become clearer. It appears that the effective 
dielectric constant reaches a maximum at very small overlap and then begins to 
decrease fairly rapidly with decrease in ion separation. 

A comparison of the field intensities at the ion centres reveals that E is small 
and hence that 1,81 ~ 1; it follows that the approximations regarding the tetrahedral 
structure that are used here and in L.W. and L.R. are acceptable. On examination 
of the cases where E' = 1 and 5 we see that the field intensity is smaller when the 
dielectric constant of the cavity is larger, in other words, the induced multipole 
moments are not completely accounted for by the introduction of a dielectric cavity 
model with E' =5, although the trends in the two cases are clearly the same. 
For the case where E' = 2·5 the field intensities lie between those for the other 
two models considered above, but the induced dipole moment is much smaller 
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(approximately 40% at contact) and it increases with decrease in separation at 
only about half the rate observed in the cavity model (e' = 1). This is a satisfactory 
result for it shows a measure of success in replacing an induced dipole moment by 
a dielectric medium. 

To represent the cavity as two truncated spheres is by no means the only 
possibility. Thus, Kirkwood and Westheimer (1938) estimated the dissociation 
constants of two similarly constituted acids by using a spheroidal cavity model 
to calculate the electrostatic work necessary to transfer a proton from the first acid 
to the ion of the second. They showed the importance not only of the charges present 
and the distance between them, but also of the shape of the molecule and the 
positions of the charges. Later Tanford (1957) proved that the interaction energy 
is critically dependent on the depth of the charges below the surface of the cavity 
and that this depth is a much more important variable than is the size or shape of 
the molecule. He suggested that this depth can be interpreted as a measure of the 
distance of nearest approach of the solvent to the charge or dipolar site and that it 
increases with increase in temperature. 

The success of Kirkwood's model with organic ions suggests that we might 
try the same model here at small ion separations. Preliminary calculations made 
in L.R. show the extreme difficulty of matching the interaction energy and, at the 
same time, the force between the ions for the two spheres at contact separation 
onto the spheroidal cavity model. However, it may be possible to choos3 a spheroidal 
cavity so that there is continuity in the interaction energy and field intensity at 
each ion centre at some smaller ion separation. Of course, it is not clear which is 
the better cavity shape to use once the hydration shells overlap or even when they 
are nearly in contact, since then there is considerable distortion associated with the 
strong electrical field between the ions. A comparison of the two models is given 
in the following paper (Part II, pp. 587-95 of the present issue). 
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