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Summary 

The energy of interaction of two monovalent ions of opposite charge with 
overlapping hydration shells and in an aqueous medium is discussed in terms of a 
spheroidal cavity model. Some of the calculations carried out in an earlier paper by 
Levine and Rosenthal (1966) are shown to be inadequate and an improved model is 
tested for consistency with the "truncated spheres model" proposed in Part 1. The 
calculations suggest that this new model can be adapted to an examination of the 
water molecules in the first hydration shells of an ion pair. Only calculations for 
the K + and F- ions are included. 

1. INTRODUCTION 

In Part I (pp. 571-85 of the present issue) the interaction energy of an ion 
pair in an aqueous medium is discussed in terms of a "truncated spheres model" 
embedded in a dielectric continuum that represents the aqueous medium. However, 
although this model may be mathematically satisfactory it is unlikely to represent 
the "true" physical situation because the hydration shells of the ions tend to repel, 
particularly at small separations. There is, therefore, a considerable distortion of the 
cavity shape, which should be accounted for with an improved model. Now it 
appears (Levine and Rosenthal 1966) that it is difficult to choose a spheroidal cavity 
in such a way that both the interaction energy and the force between the ions is 
continuous at an ion separation equal to the diameter of an isolated ion complex. 
Levine and Rosenthal were unable to effect such a matching when the cavity is 
empty because the interaction energy of the two ions, which is defined as the difference 
between the free energy associated with the two ions at the given separation and that 
at infinite separation, is a very small difference and is extremely sensitive to changes 
in cavity shape and cavity volume. On the other hand, when the cavity contains both 
point charges and a system of poles and multipoles situated in empty cavities (or 
the multipoles replaced by a dielectric medium) continuity in the energy and force 
is obtained for various geometries in either of two ways: (1) by setting the volume 
of the cavity equal to a linear function of the separation and keeping the position 
of the ionic charges fixed relative to the ends of the major axis of the spheroid, or 
(2) by varying the position of the two charges relative to the ends of the major axis 
and keeping the volume fixed. Clearly, some combination of these two possibilities 
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is better but any future work on such lines requires the use of a discrete model 
representing the ions and their attached water molecules. Before attempting such 
a complicated analysis it is important to see if a refined model based on the spheroidal 
cavity can meet with more success. 

A failing of the spheroidal cavity model of Levine and Rosenthal (1966) that 
is not pointed out by them stems from the fact that the field intensity at the ion 
centres (and hence the induced multipole moments} exhibits a discontinuity at 
contact separation of at least two orders of magnitude. The reason for such an 
abrupt change is made clear in Part r. It is with this fact in mind that a variation 
of the spheroidal model is suggested, namely, that matching of the interaction 
energy and the force between the ions should be carried out at a smaller separation, 
say 90% of the diameter of a single ion complex. In that case the discontinuity in 
the field intensity at the ion centres is very much reduced and the redistribution 
of the water molecules, originally in a tetrahedral configuration (at infinite separation), 
is kept to a minimum. The possible success of this model suggests that a spheroidal 
cavity may be useful in studying the behaviour of the attached water molecules 
and, in particular, it may be possible to determine the ionic separation at which, 
on average, the coordination number per ion changes. Such a change is suggested 
in the work of Eigen and Tamm (1962). 

Some characteristics of the spheroidal model have already been investigated 
by Westheimer and Kirkwood (1938, 1939), Hill (1944, 1956), Buckingham (1953), 
Linderstrom-Lang (1953), Buckley and Maryott (1954), and Tanford (1957), to 
mention but a few. None of these authors were concerned with the same type of 
problem but each found the model sufficiently accurate for their purposes. The 
numerical work in the present paper is based on the data in Part r. 

II. POTENTIAL PROBLEM FOR SPHEROIDAL CAVITY 

To begin we shall consider a cavity model whose boundary is an ellipsoid of 
revolution. Some of the characteristics of this spheroidal model have already been 
investigated by Levine and Rosenthal (1966; subsequently referred to as L.R.) in 
which the water molecules in the coordination shells are represented by induced 
dipoles and quadrupoles placed at the centre of each ion. In the present discussion 
it is found convenient to use confocal elliptical coordinates (g, 7], ~); thus, if P1 and P2 
are the distances of a typical point P from the two foci, whose distance apart is 2a, 
then g = (P1 +P2}/2a, 7] = (p1-P2}/2a, and ~ is the angle by which the typical point 
has been rotated past a fixed plane through the major axis. Since we have chosen 
an ellipsoid of revolution to represent the boundary and we confine all the charges 
to lie on the major axis between the two foci, the model is axially symmetrical and 
the angle ~ does not enter the formulation explicitly. In this coordinate system 
the boundary of the ellipsoidal cavity will be defined by g = go = liE, where E is 
the eccentricity of the spheroid and the ion centres are symmetrically placed between 
the foci 11 and 12 at a distance R apart, as shown in Figure 1. If the spheroid is 
treated as a uniform medium of dielectric constant €' embedded in an aqueous 
medium of dielectric constant € then the potential at a point r(g, 7]) outside the spheroid 
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has the form 

(1) 

where ek is the set of charges placed on the major axis, P nand Qn represent the 
Legendre functions of order n of the first and second kind respectively, and the An 
are constants to be determined from the boundary conditions. Similarly, the potential 
inside the spheroid may be written in the form 

(2) 

At this stage we shall replace the actual charge distribution inside the cavity by 
point charges +e and -e at positions 0 1 and O2, and the molecules inside the ion 
complex by dipoles I'- and quadrupoles e also situated at these points and having 
directions in the appropriate sense along 0 1 0 2, In order to take account of the 
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Fig. I.-Model of a spheroidal 
cavity with foci at 11 and 12 
which is taken to represent 
overlapping hydration shells; 
f' and e are the induced dipole 
and quadrupole moments 
respectively. 

changes with ion separation in the induced dipole and quadrupole moments at 
each ion centre under the influence of the reaction field, it seems sufficient for the 
present to assume that these moments are proportional to the reaction field and 
the reaction field gradient respectively. Thus, at the ion centre 0 1 we have the 
relations 

(3) 

where the reaction field o/R is that part of the potential 0/1' given in (2), which excludes 
the poles of various orders situated at z = -tR and a and yare the dipole and 
quadrupole polarizabilities respectively. Making use of this and the boundary 
conditions appropriate to the problem; namely 

0/0 = 0/1' 
we find that 

where 

and 

at g = 1jE, -1 <. TJ <. 1, 

On = (2n+1)Qn(E-1)jP n(E-1)(1-Dn), 

€' E-1- P n_1(E-l)jP n(E-1) 
Dn = -; E-1_Qn_l(E-1)jQn(E-1) , 

(4) 

(5) 

(6) 

(7) 

(8) 
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because the point charges ek are assumed to lie on the line joining the foci (g = 1) 
at the positions given by 7J = 7Jk. It follows that 

IL'{ -1+ 4;:Z3-2a'(:Or(~-~) ~'Onp;}+e'{r:;~4 +2a'(~r(},-~) ~'OnP~P~} 
= -a'{4)Z2+2(~r(~-D ~'OnPnP~}' (9) 

2"'IL'{-16~'Z4-(~)4(~-n~' Onp~p~}+e'{1-::~5+2",(~)5(~-D~' OnP~2} 

= "'{4)Z3-2(~r(~ -~) ~' OnPnP~}' (10) 

where P n = P n{Rj2a) , P~ = P~{Rj2a), ¥,. = P~{Rj2a), and we have introduced 
the dimensionless quantities 

IL' = p.jeao , e' = ejea~ , a' = aja3 , ,,' = "jaS , z = Rj2ao ; (11) 

ao is the radius of the spherical ions corresponding to infinite separation and ~' 
means that the summation is taken over the odd values of n. 

As in Part I the interaction energy can be obtained by using the Guntelberg

Muller charging process. Thus 

(12) 
where the last term on the right-hand side is minus the Born energy of the ion 
complexes, i.e. the interaction energy corresponding to infinite separation. From 
L.R. it follows that 

(13) 

with 

and 

(16) 

It is now important to choose a suitable geometry for the spheroid. Let 2a1 

and 2b1 be the lengths of the major and minor axes of the spheroid respectively and 
gao denote the distance from the centre of each ion to the nearer end of the major 
axis. Then, if the volume of the spheroid is f times the sum of the volumes of the 
two hydration shells at infinite separation 

with (17) 

A knowledge of f and g then leads to a complete specification of the spheroid at the 
given separation. 
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Already it is shown in L.R. the difficulty of matching both the interaction 
energy and the force between the ions with the two-sphere model at contact separation. 
Thus, continuity in the energy could be obtained by choosing a large volume for 
the spheroid and by keeping the positions of the ion centres fixed relative to the ends 
of the major axis. Continuity in the force was obtained in two ways: (1) by allowing 
the positions of the ion charges to remain fixed relative to the ends of the major 
axis and varying the volume linearly with the separation, and (2) by keeping the 
volume fixed and varying the positions of the ion charges linearly with the separation. 
In the first case we set 

(18) 

while in the second case 

(19) 

where A/ and Ag are constants. It is interesting to note that continuity in the force 
could be obtained for E' > 1 either by decreasing the volume or increasing the 
distance from the ends of the major axis with decrease in separation; however, 
for E' = 1 the volume has to be increased or the distance of the ion charges from the 
ends of the maj,or axis has to be increased with decreasing separation. It is clear 
that the induced multipole moments of the charge distribution in the cavity are 
very important and may account for this curious behaviour. To show their effect 
we have matched the spheroid with the two spheres at contact separation. 

Here we fix g, allow the volume to vary with separation, and neglect the 
quadrupole moment, since this will be sufficient to show the essential characteristics 
of the matching procedure. Thus, Figure 2(a) shows the variation in effective 
dielectric constant EeCf with separation when E' = 1 and the induced dipole moment 
is taken into account. It is seen that matching is effected with g = 0 '936,/(1) = 1·35, 
and A/ = -0·8. In Figure 2(b), the induced multipole moments are replaced by a 
dielectric medium with E' = 5 and this time g = 1'007, /(1) = 1'25, and A/ = +0·6. 
Finally, if we aeparate the "electronic" from the "orientation" polarizability, intro
duce a dielectric medium with E' = 2·5, and use half the dipole polarizability, as 
was done in Part I, then matching is obtained for g = 0'942,/ = 1'20, and A/ = 0·4, 
as shown in Figure 2(c). These results are to be compared with the truncated spheres 
model discussed in Part I. By way of example such a comparison is shown in 
Figure 3. It becomes clear that the effective dielectric constant decreases more 
quickly with decreasing separation for the truncated spheres model (curve C) than 
for the spheroidal model (curves A and B). 

A fact that emerges is that the induced dipole moment at contact separation 
is very much larger than the value one would have expected from the two-spheres 
model, being about lOO-fold for the case E' = 1 and 30-fold for the case E' = 2 ·5. 
Actually, Tanford (1957) pointed out the difficulty of positioning the ion charges, 
for in his calculations he shows that a movement of the charges by as little as 1 A 
can alter the interaction energy threefold. It is not surprising therefore that it is 
so difficult to match the induced dipole moment as well as the energy and force at 
contact separation, for there is an abrupt change in cavity shape in going from the 
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Fig. 2.-Plots of £.rr versus R/2ao. 
Values of >../ are given on all curves 
and the insets show enlargements of 
the top portions of the figures: 

(a) Two spheres in contact 
(R/2ao = 1) matohed onto a 
spheroidal model (£' = 1) with 
the induced dipole moment 
taken into account. The volume 
of the spheroid changes linearly 
with R according to the relation 

J(R/2ao) =J(1)->..,(I-R/2ao) , 

withJ(I) = 1-35 and g = 0·936. 

(b) Two spheres in contact matched 
onto a dielectric spheroid 
(£' = 5) with g = 1-007 and 
J(I) = 1-25. 

(c) Two spheres in contact matched 
onto a spheroidal cavity 
(£' = 2 -5, half the dipole and 
quadrupole polarizabilities) with 
g = 0-942 andJ = 1-20. 
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one model to the other. This difficulty does not arise in the truncated spheres model. 
Nevertheless, it is not known which is the better model to represent the physical 
situation. A further point worth examining is whether or not the assumption that 
1,81 is small (that,is, l(rl+rw)lIEJel ~ 1) remains valid at small separation where there 
is a strong field, and hence whether the water dipoles point away from the line 
joining the centre of the water molecule to its ion. 

90 

O~O'~5-0~'6~-O~'7~-O~'8~-O~'9~-1~'O---1~'1---"1'2' 
R/2ao 

Fig. 3.-Comparison of two dielectric 
spheroid models (E' = 5) with 
truncated spheres model ma.tched 
at contact: 

A, spheroidal model, g = 1· 007, 

I(R/2ao) = I·25-0·6(I-R/2ao); 

B, spheroidal model, I = 1· 25, 

g(R/2ao) = I·007+I·3(I-R/2ao); 

C, truncated spheres model, I = 1. 

TABLE 1 
COMPABISON OF INDUCED DIPOLE MOMENTS (IL) AND FmLD INTENSITY (E) AT THE ION 

CENTRES FOR TWO-SPHERES AND SPHEROIDAL CAVITY MODELS AT CONTACT SEPARATION 

Two-spheres Model Spheroidal Model 

E' IL Ex 10-8 
1(1) g(I) A, /L Ex 10-8 

lIore (debye) (e.s.u.) (debye) (e.s.u.) 

1 84·23 0·0332 0·0022 1·35 0·936 -0·8 3·5633 0·2352 
5 83·78 0·0015 1·25 1·007 0·6 0·0913 
2·5 83·95 0·0133 0·0018 1·20 0·942 0·4 0·7751 0·0498 

Now an inspection of Table 1 shows that this criterion is not satisfied at contact 
separation and so we. expect the transition from the two-spheres to the spheroidal 
cavity model to be unsatisfactory in taking account of the water molecules in the first 
hydration shell. A possible alternative is to match the spheroid onto the truncated 
spheres model at some smaller separation RJ2ao = 0·9, say, for then the change in 
cavity shape is not so pronounced. Some preliminary calcUlations are now carried 
out on the dielectric cavity model E' = 5 in order to ascertain whether such a matching 
could meet with more success. 
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We know from L.R. that the force between the ions can be made continuous 
by varying the factors f and/or g in accordance with (18) and (19). It is therefore 
sufficient, in the first stage of the matching procedure, to make the interaction 
energy continuous and to find a spheroidal shape for which the electric field intensity 
at the ion centres is also continuous, at least, if this is possible. Figure 4 shows 
the f versus g relation, which allows matching in the energy at R/2ao = 0·9. 

It is seen that the smallest possible volume factor f = 1·13 gives the best result, 
for then the field intensity at the ion centres changes by a factor of about 8/5 during 
the transition. This is certainly much better than the factor found by matching at 
contact separation. The assumption that 1,81 ~ 1 is then valid and so there is some 
hope of using this model to study the redistribution of the water molecules in the 
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Fig. 4.-Relation between the 
parameters J and g and the field 
intensity E at the ion centres, 
which allows matching in the 
energy at 
R/2ao = 0·9 (£' = 5). 

first hydration shells associated with their overlap. However, the field intensity 
between the two ions increases with decreasing separation and a stage is reached 
where the water molecules begin to interlock and where it is no longer possible to 
represent the charge distribution of the two ion complexes by a set of multipoles 
placed at the two ion centres. Perhaps a better approach is to examine an arrange
ment of water molecules in vacuo at close proximity and to find out what is the 
effect of surrounding these molecules with an aqueous medium. Such an approach 
has been used by Eley and Evans (1938) and Buckingham (1957) with a more recent 
development by Coulson and Eisenberg (1966). A discussion of this model has 
been developed by the author and will be presented in a subsequent paper. 
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