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Summary 

The propagation of a spherically developed shock wave in a poly trope with 
a poloida.l magnetic field has been studied using a generalization of Whitham's 
method. The effect of the magnetic field on the geometry of the front as well as on 
the effects brought about by the shock has been discussed. 

I. INTRODUCTION 

The propagation of shock waves in nonuniform compressible media with or 
without magnetic fields has been considered by a number of authors (Kopal 1954; 
Rogers 1956; Mackie and Weir 1960; Ono, Sakashita, and Yamazaki 1960a, 1960b; 
and others). In most cases, even though attention has been confined to problems in 
which physical variables depend upon one spatial coordinate and time, recourse has 
had to be made to various approximate methods, one of the most useful of which is 
that first described explicitly by Whitham (1958). Whitham first writes the equation 
of motion in characteristic form and then applies the differential relation that must 
be satisfied by flow quantities along a certain characteristic to these flow quantities 
just behind the shock. When the shock relations are used, a differential equation 
results for the propagation of the shock. If the appropriate characteristic is chosen, 
the method gives accurate results for a wide class of problems and shock strengths. 
Sakashita and Tanaka (1962), Bird (1964), Bhatnagar and Sachdev (1966), and other 
authors have applied Whitham's method to study the propagation of shock in stellar 
media with a view to explaining certain astrophysical phenomena. 

However, very few investigations have been made on the propagation of a shock 
in a stellar model with a magnetic field. A magnetic field is known to exist in stellar 
bodies and a shock wave propagates in a much more complicated way in the presence 
of a magnetic field. Together with other novel features, there is in general an anisotropy 
involved in this case. The difficulties inherent in the solution of problems of shock 
propagation in nonuniform regions are thus sharply accentuated. Even in the simple 
case when there is only a poloidal magnetic field present the flow quantities are 
functions of three independent variables. 

In the present paper Whitham's rule has been generalized in order to be able to 
deal with such problems. As in Whitham's method the differential equations are 
written in characteristic form. However, there is an important difference involved 
here, in that Whitham's characteristic equations are ordinary differential equations 
whereas in the present case the equations for the characteristic manifolds are first
order partial differential equations. The approximation used here is to assume that 

* Department of Mathematics, Monash University, Clayton, Vic. 3168. 

Auat. J. Phy8., 1968, 21, 681-93 



682 NARENDRA K. SINHA 

the motion of the shock is identical with the motion of the fast outward magneto
acoustic wave. The partial differential equations involved are solved by using the 
method of bicharacteristics. A detailed discussion of this method can be found in 
Jeffrey and Taniuti (1964). 

The problem of finding suitable stellar models with magnetic fields is still under 
investigation and detailed results are not available. Studies on the structure of 
magnetic fields in a polytrope have been made, however, as a first step towards the 
solution of the problem of magnetic fields in real stars. In the absence of such a 
solution, we use the polytropic solutions to illustrate a method of dealing with shock 
waves in magnetic stars. Roxburgh (1966) has discussed the poloidal magnetic field 
structure in polytropes without any internal motion. We take his solution (Section 
III) as our equilibrium solution of the polytropic star and illustrate the propagation 
of shock waves in this medium. 

We have not discussed the mechanism of the generation of shock waves in the 
stellar interiors, but its possibility cannot be ruled out. For example, any rapid 
expansion of the core brought about by nuclear reactions may induce a shock wave. 
In fact, shock waves are at present associated with some interesting astrophysical 
phenomena like novae and supernovae explosions, gas motions in the chromosphere, 
etc. Ono and Sakashita (1961) have quantitatively used shock waves to explain 
the mechanism of supernovae explosions. 

II. BASIC EQUATIONS 

Since we are only considering poloidal magnetic fields here, the magnetic 
induction B and the fluid velocity v may be written as 

and 

where r, cP, z are cylindrical coordinates and er , et/>' ez the corresponding unit vectors. 
The origin of the coordinates has been supposed to be at the centre of the polytrope 
and the z axis along the a:xis of symmetry. Furthermore, it is clear that, with poloidal 
fields, v and B as well as the density p and the pressure p will depend only upon 
r, z, and t. Then assuming that the viscosity is negligible, the conductivity infinite, 
and the medium a perfect fluid, the Lundquist equations (Jeffrey and Taniuti 1964) 
reduce to the following system of quasi-linear hyperbolic partial differential equations: 

op+ op+ op+ OUr+ oUz+ Ur _ 0 
ot ur or uz oz Por Poz P r -, (I) 

P OUr + PUr OUr +puz ~Ur + op + BzoBz _ BzoBr = _P o'P, 
ot or oz or p.or p.oz or 

(2) 

Ouz + Ur oUz + Uz oUz + op + Br oBr _ Br oBz = _ B'P, 
Pot P or P OZ OZ p.oz p.or P oz 

(3) 

O~r +ur oBr +uz oBr _ Bz OUr + Br oUz + Br Ur = 0, 
ot or OZ OZ OZ r 

(4) 

oBz +ur oBz +uz oBz -Br oUz +Bz OUr + Bzur = 0 
8t or OZ or or r ' 

(5) 
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8p 8p 8p 8p 8p 8p 
p 8t +pUr 8r +pUz 8z -YPfit -YPur 8r -YPuz 8z = 0, (6) 

where P is the gravitational potential. The entropy relation 8 = 80 +Cvln(pp-Y) 
has been assumed. Further P satisfies Poisson's equation 

(7) 

Since the motion is axisymmetrical, we discuss the motion in an azimuthal plane 
only. 

III. EQUILIBRIUM SOLUTION 

Roxburgh (1966) has considered dipole solutions S(R, 0) = A(R) sin20, expressing 
the field as 

B = (2A cos 0 _ ~ sin 0 0) 
- R2 ' dR R' , (8) 

in the spherical coordinates (R,O,cP)' 0 being the angle made with the z aXIS. 
S = constant are the field lines of B. The equation determining A comes out to be 

d2A _ 2A +DpR2 = 0, 
dR2 R2 

where D is a constant. Using the transformations 

R =ag, A = DPca4y, 

a = {K(n+1)p~-1_lj47TG}t, } 
where the symbols have their usual meanings, equation (9) reduces to 

d2y _ 2y = -og g2 . 
dg2 g2 

(9) 

(10) 

(ll) 

For the polytrope n = 1, 00 = (sing)jg and therefore g = 7T defines the surface of 
the poly trope. With the boundary conditions 

at 
and 

gdyjdg +y = 0 at 

equation (ll) is found to have the solution 

which is not in agreement with the solution given by Roxburgh (equation (29) in 
his paper; the variable y here is the same as Y of Roxburgh). 

The structure of the magnetic field in the poly trope is now known. The resolutes 
of B corresponding to the field (8) are 

B _ Jrz(3Q-1- cos g) 
r - 2 2 ' 

r +z 

2 2 2 B _ J{(2z -r )Q+(1+ cosg)r} 
z - 2 2 ' 

r +z 
(12) 
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where 

and 

J = pca2D 

is a constant that is proportional to the strength of the magnetic field. The null 
point of the field is located at ~ = 2 ·4035 approximately on the r axis. The field 
lines form closed loops about the null point, in the clockwise sense, in an azimuthal 
plane. On ~ = constant the magnitude of the field (Fig. 1), as well as its inclination 
with the r axis, decreases as 8 increases. Moreover, Br = 0 when either r = 0 or 
z = 0, so that at points on the axes the field is parallel to the z axis. 
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Fig. I.-Initial distribution of field 
strength on curves g = constant in 
the upper half of the azimuthal 
plane; .9'0 = 0·707 (Section VI). 
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Furthermore, p and p, which are spherically symmetric to the first approxima
tion, are given by 

p = kp2, p = pc(sing}/~, 

where ~ is expressed as 

IV. SHOCK RELATIONS 

Equations (1)-(6), being a system of quasi-linear hyperbolic partial differential 
equations, admit of weak solutions in which the values of the physical quantities 
p, p, 11, and B may be discontinuous across certain ,surfaces called shock fronts. 
(Since the gravitational potential lJf satisfies the elliptic equation (7), it will be 
analytic throughout the whole region.) The equations connecting the values of the 
physical quantities on each side of the shock front are obtained by writing the 
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equations (1)-(6) in conservation form (Jeffrey and Taniuti 1964), and in the present 
case they are 

U(p-po) = pUn, 

U(Be-BeO) = Be Un -Bnue, 

Bn = Bno, 

(13a) 

(13b) 

(13c) 

(13d) 

U pUe = PUeUn -(lfp.)(Be-Beo)Bn, (13e) 

( 2 P-Po 1 2 2 ) (2 yP K) Bn( ) 
U tPU + y-1 +2p.(B -Bo) = Un tPU + y-1 +~ -p: Bnun+Beue , 

(13f) 

where U is the absolute normal velocity of the shock front. The subscript 0 refers 
to the region at rest ahead of the shock and variables without it refer to the shocked 
region. Further, the subscripts nand e give the components normal and tangential 
to the shock front respectively in the azimuthal plane. The values of the physical 
quantities behind the shock may now be expressed in terms of those ahead of the 
shock and the shock strength A as 

p = Apo, 

Un = (l-lfA)U, 

U e = (l-A)BnBeo Uf(U2p.po-,\B~), 

Bn = Bno, 

where U itself is given by the equations 

U=o, or 

(14a) 

(14b) 

(14c) 

(14d) 

(146) 

(15) 

El, E2, and E3 being known functions of the physical quantities ahead of the shock. 
The rand z components of the physical quantities behind the shock are easily obtained 
from equations (14) by the transformations 

and F z = hzFn +hrFe. 

(h~+h~)t 

The speeds U of propagation given by (15) correspond to the various discontinuities 
that exist in a magnetohydrodynamic medium. The case U = 0 corresponds to a 
contact discontinuity and is immediately ruled out. The second equation in (15) 
is 1Io cubic in U2 and gives the speeds of the fast, slow, and intermediate shocks. 
This equation may be rewritten as 

(16) 
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EI = {(y-l)fkU2B5 po +2YfkB!Po}B~, 

Ell = {(y+l)B5+4YfkPO}fkU2B~po -{(2-y)B5-yB~}fk2U4p5, 

ElII = {(y_l)fkU2PO+2Yfkpo+(y+2)B!+yB5}U4fk2p5, 

EIV = (y+l)fk3U6 pg. 
The equation (16) is a cubic in A and gives the strength of the fast, slow, and inter
mediate shocks that correspond to a given speed U of propagation. To find the root 
Ar, corresponding to the fast shock, the evolutionary conditions for a physically 
relevant shock are invoked. The intermediate shock is noncompressive and therefore 
the corresponding A is less than or equal to unity. Such a root is discarded. Further
more, we note that a fast shock brings about an increase in the magnitude of the 
tangential component of the magnetic field, whereas the latter is decreased on the 
passage of a slow shock. We use this property to isolate Af. However, when Bn = 0, 
perpendicular shock locally, equation (16) reduces to the quadratic equation in A 

(2-y)b5 A2 +{(y-l)U2+2c5+yb5}A-(y+l)U2 = 0, (17) 

where c2 = ypj p is the square of the sound speed and b = (fkP)-!B is the Alfven veloc
ity vector. One of the roots of equation (17) is positive and the other is negative. 
Since U2 is greater than c5+b~, the positive root is greater than unity and gives 
Af in this case. Similarly, when y = 2 the only remaining root is greater than unity 
and corresponds to Af. 

Thus U and the state ahead of the shock being known, the value of Af can be 
obtained and then the values of the physical quantities behind the shock can be 
determined with the help of equations (14). 

V. GENERALIZED WHITHAM'S METHOD USING CHARACTERISTIC MANIFOLDS 

If h(r, z, t) = 0 is the equation of a characteristic manifold, across which there 
may be discontinuities in the derivatives of p, p, v, and B, then we get the equation 
(Courant and Friedrichs 1948) 

(:~) 2 
{ (:~) 4 

_ (c2 +b2)(h~+h;) (:~) 2 +c2(h~+h~) (Br hr ;pBz hz)2} = 0 (18) 

for the characteristic manifolds, where 

d 0 0 0 
dt = ot +ur or +uz oz ' 

and the subscripts on h indicate partial derivatives. The equation (18) shows the 
existence of the following three real characteristic manifolds. 

dhjdt = 0, 

(dhjdt)2-t(h;+h~)(c2+b2+'1)) = 0, 

(dhjdt)2-t(h~+h~)(c2+b2-'1)) = 0, 

(19) 

(20) 

(21) 
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where 

4c2(Brhr +Bzhz)2 
v= 

ILP (h~+h~) 
{ 2 22 t 

TJ = + (c +b ) -v} , with 

Equation (19) simply means that the particle paths are bicharacteristics, i.e. they 
generate a characteristic manifold. The characteristic manifolds given by equations 
(20) and (21) are the fast and slow magnetoacoustic wave fronts respectively. 

The equation for the outward moving fast magnetoaooustic wave h(r,z,t) = 0 
is obtained as 

(22) 

The characteristic rays in this case are given by the following system of differential 
equations. 

where 

dhz 8ur 8uz 8p 8p 8Br 8Bz 
dt = -hr 8z -hz 8i +TJ4 8z +TJ5 8z +TJ6 8z +TJ7 8z' 

dht _ -h 8ur -h 8uz 8p 8p 8Br 8Bz 
dt - r 8t z 8t +TJ4 8t +TJ5 8t +TJ6 8t +TJ7 8t ' 

TJl = (Brhr +Bzhz)(Brhz -Bzhr)/(h~+h~)ILP' 

TJ2 = c2 +b2 +TJ, 

TJ3 = +2{t(h~+h~)TJ2}i, 

TJ4 = (h~+h~)(v-2c2TJ2)/4PTJTJ3' 

TJ5 = (h~+h;)(c2TJ2+b2TJ2-V)/2PTJTJ3' 

_ (h2 +h2) ( vhr TJ2 Br) 
TJ6 - r z 2(Br hr + Bz hZ)TJTJ3 - ILPTJTJ3 ' 

_ (h2+h2) ( vhz TJ2Bz) 
TJ7 - r z 2(Br hr + Bz hZ)TJTJ3 - ILPTJTJ3 . 

(23) 

(24) 

(25) 

(26) 

(27) 

The position and orientation of the wave front are thus known if the system of 
equations (23)-(26) can be solved. An exact solution is not possible and, in general, 
numerical integration has to be employed. The method to determine the motion of 
the shock wave is to assume that the motion of the shock wave is identical with the 
motion of the outward moving fast magnetoacoustic wave with which the shock 
originally coincided. In this case the various physical quantities occurring in the 
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second members of the equations (23)-(26) are related to the physical quantities ahead 
of the shock by the shock relations (13). Since the medium ahead of the shock is 
independent of time, it follows from equation (27) that ht is constant. 

The speed U of the wave front is given by 

U = -ht/(h~+h~)!, 

where ht is now constant. If the initial values of hr and hz are chosen so that 
h;+h~ = 1, then -ht = Uo, the initial value of U, and we get 

(28) 

The shock is moving in an inhomogeneous medium and in a nonuniform magnetic 
field. Consequently, the orientation of the shock front as well as its velocity will be 
changing as it moves onwards. Equation (28) serves to give the value of the normal 
velocity of the wave front at any time at any point. 

VI. NUMERICAL INTEGRATION 

The central density and the radius of the polytrope under consideration 
(n = 1), which are independent of each other in this case, have been assumed to be 
identical with the solar values, so that 

pc = 75·858 and R = 6·951 X 1010 , 

(in CGS units) where R is the radius. (We use CGS units throughout the calculation.) 
From equations (10) it is then found that 

a = 2'212x1010 and K = 2·052x1014 • 

The shock is assumed to develop and start spherically outwards at the surface 
g = 1. On this surface it is found that J ~ 1·26 X 109 Yo, where Y = b/e is a non
dimensional parameter. Shocks of different initial intensity, corresponding to Mach 
number Ms,i (_ Uo/Oo) = 1· 25,2,3, and 5 have been considered and the propagation 
of each of them studied for different strengths of the field (12). The magnetic field 
encountered in astrophysical problems is generally weak and hence it has been 
chosen to correspond to the values 0·3, 0'5, and 0·707 of Yo at g = 1. For these 
characteristic values the field is about 108 G, which agrees well with its estimated 
value in the stellar interiors. Ms,i is limited to 5 because we have confined studies 
here to nonrelativistic and physically realistic phenomena. Knowledge of M s,« helps 
to obtain the value of Uo, and that of Yo at g = 1 helps to determine J. When J is 
known the poloidal field (12) is specified completely. 

With these initial and other relevant data equations (23)-(26) have been 
integrated in conjunction with equation (28) using the Runge-Kutta method on a 
CDC 3200 computer, with time steps D-.t = 0·1. Mter every 100 steps of integration 
the values of the physical quantities just behind the shock were computed with the 
help of equations (14). Since the magnetic field is dipole in nature, the values of the 
physical quantities must be symmetrical about the r axis. This follows also from the 
fact that the set of equations (1 )-(6) is invariant under the transformation 
(z -T -Z,Uz -T -uz,Br -T -Br). Therefore the computation has been carried out 
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only in the upper half of the azimuthal pla.ne (r-z quadrant), carrying it nearly 
as far out as the surface. Furthermore, the initial shock position now becomes a 
quadrant of the circle , = 1. 

The results of the foregoing integration give the characteristic rays through any 
prescribed values of r, z, hr, and hz, considering this set as the initial values. The 
integration has been done for 19 different points on the initial shock position at 5° 
intervals of e, unfolding the characteristic ray in each case. The position of the 
front, at any subsequent time t, in the quadrant is obtained as the locus of the 
positions at time t on the different rays. The front is, in general, not circular and 
we have expressed the different radial distances obtained for the front at any particular 
time t as the series 

where Tn(c.o) = cos(n cos-1 c.o) are the Chebyshev polynomials. Owing to the symmetry 
of the problem about the r axis and the parity property of these polynomials, only 
even terms appear in the expansion. The first term Ro(t) gives the mean radius of the 
front at time t, whereas each of the remaining terms introduces a nonspherical 
distortion. Similarly, the density ratio A, pressure ratio II, and ratio f3 of the magnetic 
field across the front, as well as the shock Mach number Ms at different times t have 
also been expressed as the respective series 

AO(t) +A2(t) T2(cos e) +A4(t) T4(cos e) + ... , 
IIo(t) +II2(t) T2(cos e) +II4(t) T4(cos e) + ... , 

f3o(t) +f32(t) T2(cos e) +f34(t) T4(cos e) + ... , 
and 

As above, the first term in each case gives the mean value of the function over the 
front at time t whereas the remaining terms introduce the nonspherically symmetric 
variations in these quantities. 

VII. RESULTS AND DISCUSSION 

As indicated in Section VI, shock waves with different initial parameters have 
been studied. The physical values recorded in some of the cases are depicted in the 
figures. The different curves, as also the corresponding cases, are referred according 
to the following scheme of initial parameters: 

Curve/Case 

Ms,l 

[/0 

1 

1·25 

0·3 

2 

1·25 

0·5 

3 

1·25 

0·707 

4 

2·0 

0·707 

5 

3·0 

0·707 

6 

5·0 
0·707 

. The following results about the shock front and the changes in physical variables 
brought about by the passage of the shock front as it propagates outwards in the 
polytrope follow from the investigations. 
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(i) Behaviour of II 

The variations of IIo and II2 with Ro, where Ro = Ro/R, are shown in Figures 
2(a) and 2(b) respectively. II2 is small and brings only a small change in IIo at 
different points on the front. This change decreases with decreasing .9'0. This is the 
pure gas-dynamical limit. In the pure gas-dynamical limit (.9'0 -+ 0) the ratio of the 
values of any physical variable across the front is uniform over the front. IIo, and 
hence II, continuously amplifies, the amplification being more pronounced with 
increasing Ms,t and less sensitive to small changes in field strength (FS). However, 

200 
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t:f 100 

50 

40 

30 
20 

(a) 

6 
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3'0 

2'0 
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6 

4 
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5 
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~..!1~2,~3 ~=~=;;::::;r;:::::L::---,,l,---,-l1'0' -3·5L-.0.2--0L-..3---=0'-.4---=0....,.5--=0"".6---,0"".7---,0,...,.g:-'C0,...,.9,....--,.JI.0 

Ro 
Fig. 2.-Variation of (a) IIo and (b) II2 as functions of Eo for different initial characteristics. 

it does not increase without limit and even for the case (6), IIo and II2 are only 
430·9 and 4·8 at 0·94Ro. These values are small compared with those obtained 
by earlier workers in the absence of a magnetic field, for example, IIo and II2 are only 
54 and -0·35 at Ro = 0·835 for the case (5) compared with the II values of 102 
and 281 obtained by Bhatnagar and Sachdev (1966) for different models, taking the 
impoverishment of II due to radiation into account but excluding any magnetic 
field. The relatively small growth of n in the present case is due to the presence of 
a magnetic field which always inhibits the growth of II, as can be seen from equations 
(14). 

(u) Behaviour of A 

A also increases continuously (Fig. 3), but as expected (as 1 < A < (y+l)/(y-l)) 
is always less than 3. A2 is small compared with AO and becomes vanishingly small 
as .9'0 becomes small, which is the gas-dynamical limit. The results near the surface 
of the polytrope may be illusory because radiation effects, which are always signifi
cant there, have not been included in this paper. The effect of Ms" on A is more 
pronounced than that of .9'0. Increasing M s" leads to increasing compression of the 
matter in the medium, but the gradient is sharper for lower M s," The change in 
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FS does not alter ,.\ appreciably. In the early stages, ,.\ is greater for weaker FS but 
in this case there exist two critical lio values, one at 0·575 lio and the other at 
0·835 lio for M S •1 = 1·25, and ,.\ changes its behaviour after each of these values. 

(iii) Behaviour of (3 

The effect of the second term, (32, is more significant (Fig. 4) in the case of the 
ratio of the magnetic field. This is due to the nonuniform and anisotropic nature of 
the poloidal magnetic field. FS, as expected, always increases after the passage of 
the shock. Taking the contribution of fh into account, it is found that (3 is not very 
sensitive to the weak changes in .'1'0. However, (3 does increase, though not appreciably, 

3·0 
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i: 
13 
~ 
"'- 2·0 2: 
0 
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1·0 

1 
13 

1 
'" '"" ~ 

-0,5 3 

0'2 0'3 0·4 0·5 0·6 0'7 0·8 0·9 1'0 

Ro 

Fig. 3.-Profiles illustrating the density ratio 
as a function of Eo for different initial 

characteristics. 
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4 

Ro 
Fig. 4.-Profiles illustrating the field strength 
ratio as a function of Eo for different initial 

characteristics. 

with increasing M s•t . The compression of the matter in the medium is basically 
responsible for the increase in the magnetic field and this explains the above behaviour 
of (3. The null point exists at 0·765 lio on the equatorial plane, which explains why 
all the curves behave critically near this point. 

(iv) Behaviour of Ms 

The shock Mach number Ms also continuously increases (Fig. 5) and does 
so more and more rapidly as M S .1 increases. This agrees with the results of Masani 
(1963) and Bhatnagar and Sachdev (1966). However, Ms is also not very sensitive 
to small changes in .'1'0, but this picture of the shock may be illusory, because the 
shock moves out in a medium in which the material density is continuously decreasing. 
In fact, the shock velocity, though always increasing, does so only slightly; for 
example, the shock velocity changes from 2 ·024 at g = 1 to a maximum of only 
2 ·29 in case (1), 2 ·33 in case (2), and 2·4 in case (4) (in 108 units) near the surface. 
Even in case (6) the shock velocity changes from 8 ·09 at g = 1 to only 8 ·13 near 
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the surface. In fact, it appears that the greater the initial shock velocity (ISV) the 
less the shock velocity increases towards the surface. This behaviour is in marked 
contrast to the changes in the shock velocity obtained in the absence of a magnetic 
field. For example, Qno, Sakashita, and Yamazaki (1960a) have found that in 
the Eddington model (M = 1 M 0' R = 0·1 R o) the shock velocity increases from an 
initial value of 2·1 X 108 at 0'125x to 5·1 X 109 near the surface (x = 0·87). Thus 
the magnetic field restrains the growth of the shock velocity. 

20 
1,4,5 3------:.---- _::---------

o 

-11 
15 

-2 i 
-3~ 

::f 
-4 S 

10 -5 

1 5 

Ro 
Fig. 5.-Variation of shock Mach numbers as 

a function of Ro for different initial 
characteristics. 

(v) Geometry of the Front 

2·0 

1·0 

-1-0 

-2,0 

Ro 
Fig. 6.-Variation of the oblateness of the 
shock front as a function of Ro for different 

initial characteristics. 

The coefficients R2i (j = 1, 2, 3, ... ) decrease rapidly so that to a first 
approximation 

R =' Ro+R2T2(cos 0), 

showing that the front is elliptical. Since the value of T2(cos 0) is +1 along the a.xis 
and -1 at the equator, the oblateness 8 of the front is given by 

8 = 2R2/Ro. 

The variation of 8 with Ro has been shown in Figure 6. Both the FS and ISV strongly 
influence the behaviour of 8. In the early stage of propagation 8 increases but soon 
after it starts to decrease steadily and becomes negative in the outer layers of the 
polytrope. This behaviour may be attributed to the structure of the magnetic field. 
The change from positive to negative takes place at the same Ro for different FS 
but the same ISV. This critical Ro differs, though only slightly, for different ISV. 
Decreasing FS decreases 8, which would vanish in the pure gas-dynamical limit when 
FS -+ O. For a given FS, however, 8 decreases with increasing Ms,t, showing that 
fronts moving in a given magnetic field are less distorted for more intense shocks. 
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In other words, the less intense the shock the greater is the time lag of the front in 
reaching t~e equator and in reaching successively the points on the surface of the 
polytrope with increasing latitudes up to the poles. For example, in case (1) it takes 
165·9 sec to move to O· 97 Ro along the axis whereas 158·7 sec only to traverse the 
same distance in the equatorial plane. 

As a result of increasing shock velocity the particle velocity behind the shock 
also increases as the front propagates outwards. The escape velocity at the surface 
is given by 

Uesc = (20M/R)! = 6'2x107 cmsec-1 • 

This velocity is always attained, in the present case, even for MS.i = 1·25, so that 
in general the shock will cause an ejection of mass from the poly trope. The presence 
of the magnetic field increases the particle velocity, as can be seen from equations 
(14), and hence the magnetic field increases the possibility of ejection of mass from 
a stellar body in the event of the generation of a shock wave in it. This may be of 
importance in novae explosions. For large M s•t , Uesc is attained well within the star 
and, in fact, with increasing M s•t the escape velocity is attained nearer and nearer 
to the centre. 

The rise in temperature brought about by the shock may be obtained from 
the relation 

T/To = II/A, 

where T is temperature, and it follows that a poloidal magnetic field inhibits the rise 
in temperature, i.e. the intense heating of the medium that occurs during the passage 
of a shock wave. The growth of higher nuclear reactions in the stellar body due to 
a shock is thus slowed and supernovae explosions are inhibited by the presence of the 
magnetic field. 
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