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Summary 

A direct method of calculating the probability for missing levels in slow 
neutron spectroscopy is described. The method gives a criterion for missing levels 
based on the Breit-Wigner resonance profile between adjacent levels and does not 
depend on correcting an observed distribution of resonance parameters to the 
theoretically expected one. 

I. INTRODUCTION 

In neutron cross section measurements, statistical errors in the accumulated 
counts and the finite instrumental resolution impose a practical limit on the ability 
to detect weak resonances. In addition, when overlapping between levels occurs, 
quite large resonances may remain unresolved. The probability of missing levels 
below the detectability limit depends only on the incident neutron energy while the 
overlapping probability depends primarily on the ratio of average level width (F) 
to average level spacing (D). When calculating average parameters such as the 
s-wave strength function and the average level spacing, an important correction must 
be applied to the raw data for these unresolved levels. 

Fuketa and Harvey (1965) have described a method of calculating the propor
tion of levels lying below the detectability limit, based on the Porter-Thomas dis
tribution of the reduced neutron widths. The experimental resolution limit is propor
tional to a power of the neutron energy, and integration of the Porter-Thomas dis
tribution up to this limit over the energy range considered yields the relative 
probability of missing the weak levels. This method does not take into account the 
levels that are missed by overlapping since these may have reduced neutron widths 
in excess of the detectability limit. 

The Fuketa and Harvey method is not rigorously correct (Wilkins 1967) even 
for the calculation of the probability of missing weak levels, since it is assumed that 
resonances are randomly distributed on the energy axis instead of obeying a dis
tribution such as that proposed by Wigner (1957), where small spacings are rare for 
levels of the same spin sequence. The effect of the assumption about the random 
placement of levels is to overestimate the number of levels missed in the energy 
range. 
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In fissile nuclei, where the ratio <r)/<D) is large, overlapping of levels cannot 
be ignored and Musgrove (1967) developed a method of calculating the number of 
levels missed in these nuclei. The method in effect corrected the observed distribution 
of resonance peak heights and, since it was insensitive to the precise experimental 
resolution limit, it was expected to contain a contribution from overlapping levels. 
A calculation performed on 233U, which has the largest known value of <r)/<D), 
indicated that approximately 30% of the levels in that nucleus were undetected. 

The correction method described here is an improvement over those outlined 
above since it no longer depends on correcting an experimental distribution of 
parameters, but gives the total probability for missing levels directly. Both classes 
of missed resonances are treated identically and weak levels are assumed to be missed 
owing to "overlapping", no matter what the inter-resonance spacing. 

II. METHOD OF CORRECTION FOR NONFISSILE NUCLIDES 

The Doppler-broadened capture cross section at an energy E between two 
adjacent resonance levels at energies El and E2 is given approximately by the sum 
of two Breit-Wigner terms and a contribution from distant levels: 

(1) 

where rn , F y , and r are respectively the neutron, radiation, and total widths of a 
level, A is the neutron wavelength, and g is the appropriate spin weight factor. Also 

ljJ(x,t) = t(7Tt)-t f~oo (l+y2)-lexp{_(x_y)2 /4t} dy 

is the usual Voigt profile with arguments defined by 

x = 2(E-Edlr, 

where fL is the mass ratio and T the temperature of the absorber atom in energy units. 

Radiation widths vary little from level to level since radiative decay proceeds 
through a large number of independent channels, and it is usual to assume that the 
neutron decay widths are negligible in comparison. Under this assumption the total 
widths are approximately constant and equal to the radiation width, and equation 
(1) can be written as 

Uc "" const{ljJ(x, t) + RIjJ(x-a, t)}+Udist, (2) 

where a = 2(E2-E1)lr, R = r~2Ir~1 is the ratio of the peak heights, and we ha.ve 
further assumed for simplicity that gl = g2 and tt = t2. When R = 0, the second 
resonance is missed for all values of a, but, for a particular nonzero value of R, a 
limiting separation exists, say aL(R, t), where the two levels are just resolved. We 
adopt the criterion that the resonances are just resolved at the first formation of a 
"shoulder" between them, i.e. when two points of inflexion first occur in the resonance 
profile of equation (2) in the interval ° < x < a. Using the expression for 821jJ18x2 
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given by Clancy and Keane (1964), the second derivative of the cross section with 
respect to x can be written as 

d2ujdx2 = const[I-(1+x2+2t)ifs(x) -2x(xifs(x) -cp(x)) 

+ R{I- (1 + (x-a )2+ 2t)ifs(x-a) - 2(x-a)( (x-a )ifs(x-a) -cp(x-a))}] 

+d2udlstjdx2, (3) 
where 

10-3 10-' 

R 

Fig. I.-Limiting separation of two resonances aL(R, t) (in units of half the level width) for 
which the levels are just resolved plotted against the peak height ratio R. 

and the argument t has been suppressed in ifs(x, t) and cp(x, t). If it is now assumed 
that udlst is a slowly varying quantity between the resonances and consequently 
that d2udlstjdx2 ~ 0, the positions of the zeros of the d2ujdx2 can be found numerically. 
The limiting separation of the two resonances aL(R, t) for which less than two points 
of inflexion occur in ° < x < a is shown in Figure 1 plotted against R for four values 
of t. For small values of R (~ lO-2) it is seen that aL(R, t) is proportional to a power 
of R, the exact dependence being given by 

aL(R, 1) = 2·266R-o·257, 

aL(R,O·I) = 1·546R-o.257, } 

aL(R, lO) = 7 ·482R-o·208. 
(4) 

The total probability of failing to resolve the two levels is the product of the probability 
for finding a relative peak height R and a level separation less than iFaL(R, t), 
integrated over all R. The two distributions are readily obtained for a nonfissile 
nucleus that forms two level sequences when bombarded with slow neutrons. 
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The frequency function for the peak height ratio R is given simply by the F 
distribution with (I, I) degrees of freedom, since reduced neutron widths are dis
tributed about their mean as X2 variables with one degree of freedom: 

R(r)dr = {r-1/7T(1+r)}dr. (5) 

This function is plotted against the ratio r = Fn2/Fnl in Figure 2. 

1'8 

1·2 

0·8 

0'2 

o 1·0 ,2·0 3'0 4·0 5'0 

Fig. 2.-Probability density 
function R(r) in equation (5) 
versus the ratio r = rn2/rnl. 

The spacing distribution law for a level sequence of the same spin and parity 
and average level spacing <D) is given to a good approximation by the surmise of 
Wigner (1957) 

(6) 

where x = D/<D). Owing to the level repulsion effect, overlapping between levels 
of the same spin sequence is negligible and the correction technique of Fuketa and 
Harvey (1965) is adequate. However, since the spacing distributions for different 
spin states are independent, the probability of overlapping becomes appreciable 
when two spin states are superimposed. The probability density of spacings resulting 
from the random superposition of two level sequences both having equal average 
level spacings <D) and spacing distributions given by equation (6) is given by 
(e.g. Mehta 1967) 

ql(X) = trrxexp(-trrx2)erfc(l7Tlx) +exp(t7TX2), (7) 

where x = D/<D); and finally the distribution function for such a sequence is 

P(y ~x) = 1-exp(-trrx2)erfc(!7TIX) , (8) 

where 
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The frequency and distribution functions for the spacings of two superimposed 
level sequences given by equations (7) and (8) are shown in Figure 3. 

2·0 

Fig. 3.-Probability density 
function ql(Y = x) and 
distribution function P(y .;;; x) 

for spacings of two super
imposed level sequences 
versus x = DI<D). <D) is 
the average level spacing per 
spin state, assumed the same 
for each sequence. 

The total probability for failing to resolve the two levels can now be written as 

P1(overlap) = LOO R(r)P(x ~ xL(r)) dr, (9) 

where xL(r) = raL(r)j2<D). The integration is performed numerically and Figure 4 

I 1 I I I ! I 

0·2 0-3 0-4 0-5 0·6 o· 7 0-8 0-9 1·0 

PI (overlap) 

Fig. 4.-Probability of two 
levels overlapping Pl(overlap) 
in nonfissile nuclei versus 
the ratio rl<D). 

shows the overlapping probability versus the ratio rj<D) for four values of t. There 
are further small corrections to be applied to the missing probability of equation (9) 
from multiple overlapping of levels. The contribution from levels overlapping three 
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at a time can be calculated as for the two-level case, but since this will be found 
to be small no higher order corrections will be attempted. 
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Fig. 5.-Limiting separations of three adjacent levels aL(Rl, R a, t) and h(Rl, Ra, t)
aL(Rl,R2,t) shown for t = 0, various values of Rl, and (a) R2 = I, (b) Ra = 0·1, and 

(e) Ra = 0·01. 

III. CORRECTION FOR TRIPLE OVERLAI'PING OF LEVELS 

The capture cross section corresponding to equation (2) for three adjacent 
levels can be written as 

O"c ~ const{ifs(x, t) +Rl ifs(x-a, t) +R2ifs(X-b, t)} +O"dist, (lO) 

where 

o ~ a ~ b. 

The second derivative of the cross section corresponding to equation (3) is readily 
found and again the limiting values of a and b for which less than two points of 
inflexion occur in 0 < x < b are found numerically. Figure 5 shows the limiting 
values aL(Rl, R2) and bL(R1, R2) for several values of Rl and R2 and t = O. Because 
of the symmetry between the configurations (I,Rl,R2) and (I,Rl/R2,I/R2) only 
values of R2 ~ 1 need be considered. The overlapping probability in this case is a 
double integral over Rl and R2 and some simplification of the limiting level separations 
is desirable for computation. Comparison with the limiting values of a in Figure 1 
for the two-level problem allows the following approximations to be made to the 
limiting three-level separations: 

Rl ~ 1, R2 ~ 1, Rl > R2 aL(Rl, R2) ~ aL(Rl) , h(R1, R2) ~ aL(R2) , 

Rl ~ 1, R2 ~ 1, R2 > Rl aL(Rl, R 2) ~ aL(R2) , bL(Rl, R2) ~ aL(R2) ' 

(11) 

(12) 

(13) 

where the argument t has been suppressed. Owing to symmetry, the three regions 
of Rl, R2 above are sufficient to include all possible configurations of three levels. 
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To proceed further, we require the probability that if a resonance occurs at E, which 
is taken to be the origin, then the second level occurs within an interval Xl ~ a 

and the next level occurs within an interval X2 ~ b. The two level sequences are 
assumed to have equal average level spacings, and without loss of generality the 
resonance at E is assumed to belong to the first sequence. The probability that the 
third resonance occurs in X, x+dx, conditional upon the second having occurred at 
Xl = k, can be written as (Wilkins and Musgrove, to be published) 

+h2(k){P1(X-k) L>') P1(y) dy(L>') P1(y) dy) -1 

+Pl(X{Coo Pl(y) dY) -1 {oo Pl(y-k) dY} dx, (14) 

where P1(X) is the Wigner distribution in equation (6) and hi(k) is the probability 
that the resonance at k is of the ith sequence and 

} (15) 

with ql(k) given by equation (7). The probability that the third resonance occurs 
anywhere in the interval k ~ X2 ~ b can then be written as 

P(X2 ~ b I Xl = k) = J: P(x I Xl = k) dx 

exp( - !7Tk2) ( 2 ( 2)) 
+ q1(k) exp( -!7Tk ) -exp -!7T(b-!k) , (16) 

and the required distribution is 

P(X2 ~ b, Xl ~ a) = Lk q1(k) P(X2 ~ b I Xl = k) dk, (17) 

where a ~ b. Figure 6 shows the slightly different distribution function 
P(X2 ~ (b-a), Xl ~ a) versus Xl and X2, where in this case X2 is the spacing between 
the second and third levels. The integration of equation (17) was performed 
numerically. 
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Since Rl and R2 are dependent variables, the probability element in their joint 
distribution is required. The distribution of reduced neutron widths about their 
mean is given by 

P(X) = (21Tx)-1 exp( -Ix) , 

and putting x, = r~j!<r~), i = 1,2,3, the joint element for Xl, X2, and Xa can be 
written as 

o 

a 
P(Xl' X2, xa) dx1 dx2 dxa = n (21TXC) -I exp( -IX') dx, . 

1=1 

0·99 

a 

Fig. 6.-Distrihution function 
P(xa <: (b-a), Xl <: a) 
shown for first resonance 
spacing Xl and second reson· 
ance spacing Xa for a super· 
position of two simple sequences 
having equal average level 
spacings. 

(18) 

The required element is obtained by substituting Tl = X2!Xl and T2 = Xa!Xl in 
equation (18) and integrating over Xl to obtain 

(19) 

The probability of failing to resolve the three levels is therefore 

where 

and 

When the appropriate values for aL and h are inserted from equations (ll), (12), 
and (13) the integration can be carried out, and Figure 7 shows the probability for 
triple overlapping versus F/<D) for four values of t. For most nuclei the correction 
can be ignored for small energies; however, in 2aau for which <r)!<D) ~O'2 the 
correction amounts to approximately 2%. 

IV. METHOD OF CORRECTION FOR FIsSILE NUCLIDES 

In fissile nuclides the calculation of the correction for missed levels is complicated 
by the fact that the fission widths, and hence the total widths, fluctuate from level 
to level and the peak height ratio of two resona.nces is no longer given by the ra.tio 
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of two reduced neutron widths. The fission cross section between two adjacent 
levels is given in the single-level Breit-Wigner approximation by 

where Ff is the fission width of the level and all other symbols have been defined 
previously. Multilevel effects have been ignored in equation (21) since, owing to 
the level repulsion effect, overlapping is much more probable for levels of opposite 

1~2L-~ ____ ~~~ __________ ~ __________ ~ __________ ~ 

10--4 10-3 10-2 10-1 

P2 (overlap) 

Fig. 7.-Probability of three levels overlapping P2(overlap) versus the ratio F/<D> 
for four values of t. 

spin than for levels of the same spin and parity. In any case, it is expected that the 
limiting separation at which two levels with peak height ratio R are just resolved 
will, at least on average, be given by the aL(R) found in the nonfissile case. In analogy 
with equation (2), the fission cross section can be written as 

af ~ const{if!(x, t) +RSif!(x-a, t) }+adist, (22) 

where 

and 

The fission process proceeds through a small number of open channels and the 
distribution of fission widths about their mean is usually represented by a chi-squared 
distribution with n degrees of freedom, where n usually lies between 2 and 4: 

P(z) = (nin/{2in F(!n)})exp(-!nz)zln-l, (23) 

with z = Fr/<Fr). It should be noted that it is purely a matter of convenience to 
represent this distribution by a member of the X2 family since the fission process 
typically proceeds through a different number of channels from each spin state and 
the average fission widths for each spin state are usually different. 
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To obtain the probability element for the variate Frjr2, the substitution 
y = zj(z+C)2 is made in equation (23). Thus 

c = ryj(rr) is constant, z = {1-2cy±(1-4cy)1}j2y, 

and 

P( )d - ntn f(y) d 
y y - 2tn J'(ln)y(1-4cy)! y, 

o ~ y ~ 1j4c, (24) 

where 

with 

~l = {1-2cy+(1-4cy)i}j2y and ~2 = {1-2cy-(1-4cy)1}j2y. 

The element in the joint distribution of the two independent variables rf1jr~ and 
rt2j r: is clearly 

P(x )dxd = nn f(x)f(y) dxd 
,y y 2n(ran))l!xy{(1-4cx)(l-4cy)}t y, 

(25) 

where x = rf1jr~ and y = Fr2jr;. The probability density function for the ratio 
xjy is obtained by substituting u = xjy and v = y in equation (25) and integrating 
over v. Thus 

P(u) du = n nn (1/4C f(uv)f(v) dvdu, u < 1, (26a) 
2 (r(tn))2 Jo uv{(1-4cv)(l-4cuv)}t 

nn fl /4CU f(uv)f(v) d d 
= n 2 V u, 

2 (r(tn)) 0 uv{(1-4cv)(l-4cuv)}t 
u> 1. (26b) 

Putting v = sin20j4c in equation (26a) and v = sin20j4cu in (26b) we obtain 

P(u)du = Kft1T f(Sin20j4c)f(us~20j4C) dOdu, 
u 0 sinO(l-usin O)! 

u < 1, (27a) 

=! (t1T f(sin20j4c)f(us;n20j4C) dOdu, 
ut Jo sin 0 (u-sin O)! 

u> 1, (27b) 

where 
K = nnj2n-l(r(tn))2. 

The joint probability element in the distribution of S = (rf1jr~) -7- (Ft2jr;) and 
R = r~jrg2 is now 

P(r,u)dudr = {r-!P(u)j1T(l+r)} dudr, 

and the element for the product ur is obtained by substituting x = ur and y = u 
and integrating over y. Thus 

Q(x) = K e (xjy)-t P(y) dy +K ('YO (xjy)-l P(y) dy 
J 0 1T(X+Y) J1 1T(X+Y) 

(28) 
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and ultimately the required probability element in the distribution of x = RS 
becomes 

JoG 

J.4 

1'2 

Q(x) dx = K (1 _1_(_1_ + _1_) dy (l7r !(sin28/4c)!(ysin28/4c) d8dx (29) 
7T Jo (xy)t x+y xy+1 Jo sin 8 (l-ysin28)t ' 

Fig. S.-Probability density function 
Q(x) in equation (29) versus 

~ 1'0 x = (r,'12Fr2/ri) -;- (r,'11rn /I1) 
for c = 0·1 and n = 3. 

~ 
0' 

0·8 

0·6 

0·4 

0·2 

0 4 
x 

10-2 LL---:l.,----:l::----:l::----:f-:----;~---:t;:_-;!;;_-t;:-~ 
0'1 0'2 0'3 0·4 0·5 0-6 0-7 0'8 0-9 

PI (overlap) 

Fig. 9.-Probability of two-level 
overlap versus the ratio r/<D) for 
t = 0 in (A) non1lssile nuclides, 
and (B) fissile nuclides. 

upon manipulating the second integral in equation (28). Figure 8 gives Q(x) versus 
x for c = 0·1 and an assumed value of n = 3 for the number of degrees of freedom 
in the fission width distribution. The total probability for missing either of two 
adjacent levels in fissile nuclei can now be obtained by replacing the R distribution 
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by Q in equation (9): 

PI (overlap) = 5000 
Q(r)P(x ~ xL(r)) dr. (30) 

The overlapping probability is shown in Figure 9 against FI<D) for t = 0 and is 
compared with that found for the nonfissile nuclides. The overlapping probability 
for fissile nuclei is at most 5% greater than that for nonfissile nuclei and for most 
purposes can be ignored. Because of this we do not attempt to calculate the three
level overlapping probability for fissile nuclides but will be content to approximate 
it by the correction already calculated in the nonfissile case. We now give a calculation 
of the probability for missing levels in 233U and compare it with an earlier result of 
Musgrove (1967). 
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r~/<r~> 
Fig. 1O.-Histograms for 233U of (a) first 30 level spacings compared with the expectation values 
(dashed lines) from equation (7) and (b) 31 values of r~/<r~> compared with the expectation 

values. 

V. CALCULATION OF PROBABLE NUMBER OF MISSED LEVELS IN 233U 

There is a considerable body of indirect experimental evidence for the existence 
of undetected resonances in 233U. Small inter-resonance spacings are observed much 
less frequently than is expected when two independent level sequences are super
imposed. This is seen in Figure 10(a) where a histogram of the first 30 level spacings 
(normalized to unit mean) is shown and compared with the expectation values of 
equation (7) .. 

In the experimental distribution of reduced neutron widths, once again, small 
values are lacking as is seen in the histogram plotted in Figure lO(b) with expectation 
values. In fact, Nifenecker (1964) found that this distribution is fitted quite well by 
a X2 distribution with four degrees of freedom instead of the expected one degree of 
freedom. Since there is no reason to believe that 233U has other than a single neutron 
decay channel, or that the distributions of resonances of different spin states are not 
independent in that nucleus, it appears that unresolved levels may cause the 
discrepancies. 
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In order to calculate the probable number of levels missed for 233U, care must 
be taken to select an "unbiased" sample of observed levels. Our criterion for failing 
to resolve two levels with peak height ratio R is that the levels are separated by less 
than adR)<r)/2<D). In fissile nuclei where r fluctuates considerably from level to 
level it is possible for two levels to be resolved experimentally with separations less 
than the limit (e.g. when -Hn+r2) ::;;; <r»). In 233U, the levels reported by Nifenecker 
(1964) at 7·65,16·82,18·75, and 26·50eV fall into this category and are therefore 
omitted from the "observed" resonances for this calculation. 

Suppose that No levels are detected experimentally in an energy range 
EI ::;;; E ::;;; En, where EI and En are the energies of the first and last levels in the 
sequence, and further suppose that v levels with average total width <r)' are missed 
in this range. The actual average level spacing per spin state <D) and the actual 
average total width <r) may be written as 

(31) 

where r t is the total width of the ith level and we have assumed equal average level 
spacings in each spin state. For this calculation it will be assumed that the missed 
levels have the same average total width as the observed levels. The expected 
number of levels missed in 233U can now be obtained by iteration. Thus 

(32) 

where m is the order of the iteration, y is the ratio <r)/<D), and PI and P 2 are 
respectively the probabilities for two- and three-level overlap given in equations (9) 
and (20). The parameters used in the present calculation were taken from Nifenecker 
(1964), where 31 levels are reported with average total width 0 ·38 eV between energies 
1·799 and 29 ·51 eV. Since four of these levels are "unresolved" by our criterion, 
we solve equation (32) for v using No = 27. The probable number of levels missed 
in the range was found to be 16·8 after 12 iterations. The positions of 4 of these 
are known already, but the remaining 13 levels are undetected. This value agrees 
very well with the earlier result of Musgrove (1967) where 1l±2 was the expected 
number of levels missed for the Nifenecker data in a slightly smaller energy range. 
The corrected average level spacing of 233U for the present calculation is 0·64 eV 
compared with the earlier corrected value of 0 . 65 e V. 

VI. CONCLUSIONS 

In the direct method of calculating the probability for missing levels in slow 
neutron spectroscopy as described above, the probability depends only on the 
observed ratio <r)/<D), unlike earlier methods which require the (unknown) average 
reduced neutron width of the missed levels as a parameter. The present method 
treats overlapping levels and weak levels identically and it has been shown that for 
practical purposes only two-level overlapping contributes to the total probability 
for missing levels. For nonfissile nuclides the correction is small (:oS lO%) at low 
energies but a calculation of the number of missed levels in 233U indicates that 
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approximately 30% of the levels in that nucleus are undetected. This value agrees 
quite well with that reported by Musgrove (1967). 
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