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Summary 

A method is found for determining the electrostatic potential due to two 
separated spherical cavities each containing a point charge with the whole system 
embedded in a continuous dielectric medium. The potential is obtained as a sum 
involving Legendre polynomials and it is shown that the coefficients of this series 
can be expanded as a convergent power series in the reciprocal of the distance between 
the centres of the cavities. This solution is suitable for numerical calculations 
because there is a simple relationship between successive terms in the series and 
because this series is convergent even at contact separation. 

1. INTRODUCTION 

Ever since Bernal and Fowler (1933) discussed the nature of ions in an aqueous 
solution there has been a growing interest in spherical and ellipsoidal cavity models 
which are used to represent ions and their attached water molecules. For example, 
Onsager (1936), Kirkwood and Westheimer (1938, 1939), Hill (1944), Scholte (1949), 
Ross and Sack (1950), Abbott and Bolton (1952), Linderstrem-Lang (1953), Buckley 
and Maryott (1954), Buckingham (1957), and Kober and Fitts (1966) have placed 
charges in an isolated cavity at appropriate points and have solved the electrostatic 
problem in order to develop a theory of polar liquids. Now to discuss the interaction 
of an ion pair in an aqueous medium we can use, as a very crude mathematical 
model, a pair of nonoverlapping spherical cavities each containing a point charge 
at its centre. Rosenthal (1967) discussed some of the applications of a two-sphere 
model where both cavities have the same radius but opposite charge, but he did not 
consider the validity of the expansions nor did he find an expression for successive 
terms in the series. 

To date a number of problems involving separated conducting spheres have 
been solved by making use of spherical polar coordinates. Thus, Kottler (1927) and 
Mitra (1944) found a functional equation whose solution leads to a determination of 
the capacity of two spheres, assumed to be exterior to each other. On the other hand, 
Hobson (1931) and Lebedev (1965) obtained a much simpler solution for the potential 
in terms of dipolar coordinates. Davis (1964) extended this work to take into account 
the influence of a field that is uniform at infinity. The latter approach was not 
found useful in solving the problem under consideration here because it leads to a 
set of four simultaneous difference equations for which there is no known solution. 
Instead, we shall use two spherical polar coordinate systems and apply Hobson's 
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method of transforming solid harmonics in order to satisfy the boundary conditions 
on the two surfaces. 

Similar problems related to the present one are treated by Shail (1962), who 
extended Mitra's method to find a harmonic function that takes prescribed values 
on two nonintersecting spheres, and Snow (1949), who considered the case of over
lapping conducting spheres in great detail. There are also a number of papers on 
inviscid flow near toroids, lenses, and overlapping spheres which are related to the 
problem at hand (see Stimson and Jeffrey 1926; Payne and Pell 1960; Pell and 
Payne 1960a, 1960b; Collins 1963; Ranger 1965). 

II. EXPANSIONS FOR THE POTENTIAL 

Consider two spherical cavities Sl and S2 which do not overlap and which are 
at separation R = 0 10 2 where 01 and O2 are the centres of the cavities containing 
the point charges el and e2 respectively. Let P be a typical point in the vicinity such 
that Oi P = ri, for i = 1 or 2, and let (h and (}2 be the angles POI O2 and P02 0l. 
(In what follows the suffix i = 1 or 2 will be used to refer to the first and second 
cavity respectively.) These coordinates are so defined that rl = r2 and (}l = (}2 for 
any point P on the median plane. The spherical cavities are taken to have radius 
ai and the whole system is embedded in a continuous medium of dielectric constant E. 

An expansion for the potential at P inside Si can be obtained by applying 
Green's theorem. Now the potential inside the cavity St may be written 

(1) 

where Ut(P) is harmonic inside St. Let Qt be any point on the boundary of St with 
coordinates (ai, (}t, cPt) then 

Ui(P) = ~ f{U(Qt) ~(~) - .!.- O~(Qt)} dSt, 
4rr on pt pt on (2) 

where Pt = PQt, U(Qi) is the potential on the boundary of St, and a/on denotes 
differentiation along the outward normal n. An expression for U,(P) can then be 
found by integrating the above equation with respect to cPt, remembering that the 
potential is independent of the azimuthal angle, and using the identities 

(3) 

and 

* * * cos Yi = cos (}i cos (}t + sin (}t sin (}t cos( cPt - cPt ) , (4) 

together with the addition formula 

* n (n-m)1 m m * * 
Pn(cosYt) = Pn(COS(}i)Pn(COS(}i) +2 ~ ( + );Pn (cos (}i)Pn (cos(}t )cos{m(cPi-cPt n, 

m~l n m. (5) 

where the P:(x) are the associated Legendre functions as defined in Hobson (1931). 
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Finally, we obtain 
co 

Ve(P) = ei/re + (ei/ae) ~ d! (ri!aet P8(COS Oe), (6) 
8=0 

where the unknown coefficients d! will be determined from the boundary conditions 
and . 

(7) 

with 
W(Q,) = at 8U(Q,)/fJn +(s+I)U(Qf). (8) 

By Schwarz's inequality (Titchmarsh 1950) it follows that 

(9) 

From equations (7) and (8) and the integrability of the potential and its gradient 
normal to the boundary Se we obtain the result that Is-I d! I is bounded for aIls. Thus 
the series in (6) is absolutely and uniformly convergent within S, and convergent 
on the boundary of Sf, except perhaps at the points Ot = 0 or 7T (see Hobson 1931). 

In much the same way we can find an expression for the potential outside the 
two cavities. Thus, 

(10) 

where 

(11) 

and 
(12) 

In this way we find that the series in (10) are absolutely and uniformly convergent 
outside the two cavities and convergent on the boundaries, except possibly at the 
points where 0 = 0 or 7T. 

III. FORMULATION OF DIFFERENCE EQUATION 

The boundary conditions that must be satisfied at the surfaces of the two 
spheres rt = at are 

v, = Vo, (13) 

and these will be used to obtain two difference equations for the coefficients g!. 
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In what follows we shall use the formula of zonal harmonics 

Pn( cos (J2) 1:; (m+n) (rl) mp ( (J ) ----"'-"----:-"'" = -- l.,; - m cos 1 , 
r:+1 Rn+1 m~O n R 

(14) 

when I rl I < R and a similar expression with the suffixes 1 and 2 interchanged. 
These formulae were obtained by Hobson (1931) but he defined the angles (Ji in a 
slightly different way. 

To begin, both boundary conditions will be applied on the surface rl = al 
and then an interchange of the suffixes will give the equations appropriate to the 
surface r2 = a2. From the first of the conditions in (13) we obtain, after substituting 
(14) into (10), rearranging the absolutely (and uniformly) convergent series, multi
plying by Ps(cos(Ji)sin(Ji, and integrating from 0 to 7T, 

(15) 

and 

(16) 

for n = 1, 2, 3, ... , where ti = ailR. Similarly, the second boundary condition in 
(13) leads to 

(17) 

for n = 1, 2, 3, .... Since the last terms in (16) and (17) are identical it follows that 

n(€-I)d~ = (2n+l)g~ 

and hence, on substituting back into (16) or (17), we get 

00 

(e2Iel)lXntf+1t2 = gi t2 -(e2Iel) l: IXnPn,mg~, 
m~l 

for n = 1, 2, 3, ... , where 

P _ (m+n) tm+1 tn+1 n,m - n 2 1 

and 

(18) 

(19) 

(20) 

(21) 

The two boundary conditions are now applied on the second surface r2 = a2 
in which case we obtain the relation 

for n = 1, 2, 3, .... 

00 

(elle2)lXnt;+1tt = g~tl-(elle2) l: IXnPm,ngin, 
m~l 

(22) 
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IV. EXISTENCE AND UNIQUENESS OF SOLUTION 

The problem that remains is to solve equations (19) and (22) for the sets of 
coefficients g;. Since this involves an infinite number of equations it is important 
to determine the condition under which a solution exists and then to devise a method 
of finding it. 

The sum by rows and columns of the matrix P n, m are given by 

00 

Rn = ~ Pn,m = t2[{t1/(I-t2)}n+1-tf+1] 
m=l 

(23) 

and 
00 

Om = ~ Pn,m = h[{t2/(I-t1)}m+1-t~+1J. 
n=l 

(24) 

Clearly both Rn and Om are bounded functions since, for nonoverlapping cavities, 
we have 0 ~ h +t2 < 1. Hence 

and 

If we now eliminate g! between equations (19) and (22) we obtain 

00 00 

(e2/e1)<Xn tf+1 + ~ <xm<xnPn,mt~ = ~ (On,s-Qn,s)g} , 
m=l s=l 

where on,s is the Kronecker delta and 

00 

Qn,s = ~ <Xn<Xm Pn,m Ps,m/(t1 t2). 
m=l 

(25) 

(26) 

(27) 

Since 0 < <Xk < 1 the inequalities in (25) imply that Qn,s has row and column bounds 
less than unity and hence, from theorem 2.4.1 on page 30 of Cooke (1950), it follows 
that (on,s-Qn,s) has the unique and two-sided reciprocal 

(28) 

where Q = (Qn,s) and I is the unit matrix. The coefficients g; can therefore be 
expressed as a double power series in hand t2 provided that 0 ~ h +t2 < 1. 

V. ITERATIVE SOLUTION 

The double power series expansion for the unknown coefficients can be obtained 
more easily by a direct substitution into equations (19) and (22). Let 

i = 1 or 2, (29) 

and substitute into equations (19) and (22). On equating the coefficients of powers 
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of hand t2 we obtain 

i an(O,O) = 1, 
[t(s-l)] 

a~(r,8) = ~ (m;in) ama~-i)(r,8-2m-l), (30) 
m~l 

if rand 8 are not both zero. This is a difference equation from which it is a straight
forward matter to calculate successive values of a~(r, 8). Thus, after a considerable 
amount of algebra, we find that 

g~ = ant~+l{I+(~)(nil)alt~ +(~)(nt2)a2t~ +2(nil)a~t~t~ 

+ (~)(n~3)a3t~ +3(nt2)ala2t~t~ +2(nil)a~tft~ + ... }, (31) 

with a similar expression for g!. The above equation is consistent with the result 
given by Rosenthal (1967), who was concerned only with the case el = -e2 and 
h = t2. 

This method of determining an expansion for the coefficients g~ is very easily 
carried out and is particularly suitable for numerical computations, some of which 
were carried out in an earlier paper (see Rosenthal 1967 for further discussion). 
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