SHORT COMMUNICATIONS

STUDY OF COMBINED EFFECT OF KELVIN-HELMHOLTZ INSTABILITY AND GRAVITATIONAL INSTABILITY ON A SELF-GRAVITATING FLUID LAYER*

By C. UBEROI[†] and R. JAYAKARAN ISAAC[‡]

The instability of a self-gravitating fluid layer of finite thickness surrounded by another fluid of different density has been studied recently by Uberoi (1963) and Tassoul (1967)§ under varying conditions. Now the condition can arise when the fluid inside the layer and the surrounding material are in relative horizontal motion. It is interesting to study the combined effects of the Kelvin–Helmholtz (KH) instability associated with short wavelengths and the gravitational instability associated with long wavelengths on this layer.

We consider a homogeneous distribution of gravitating ideally conducting fluid mass with constant density ρ in the form of a plane layer of thickness 2h. The XOY plane is taken to coincide with the unperturbed middle level of the layer and the positive z axis in the upward direction normal to the unperturbed fluid surfaces. This layer is surrounded by a nonconducting fluid of uniform density ρ_0 . In the equilibrium state we assume that the system is pervaded by a uniform magnetic field H_1 in the conducting layer and H_2 in the nonconducting fluid, both directed in the x direction. We further assume that initially the conducting and nonconducting fluids are moving with velocities V_1 and V_2 respectively in the x direction. As the disturbances along the direction of the streaming velocities of the fluids and the magnetic field are most sensitive to the KH instability (Chandrasekhar 1961), we shall consider the wave propagation in the x direction only. Hence, we assume that the perturbed quantities depend on time t and spatial coordinate x as $\exp\{i(\omega t + kx)\}$. As the mathematical procedure is well known (e.g. Uberoi 1963; Tassoul 1967), we shall not give the details here. Following the procedure given in Uberoi (1963), we obtain the dispersion relation, which factorizes into the following two factors corresponding to the asymmetric and symmetric perturbations:

$$\{(\omega + kV_1)^2 - k^2 V_A^2\} \tanh \theta + \tau\{(\omega + kV_2)^2 - k^2 V_B^2\} + 4\pi G\rho(1-\tau) \left(-1 + \frac{1-\tau}{1+\coth\theta}\right) = 0$$
(1)

* Manuscript received June 14, 1968.

[†] On leave to Harvard College Observatory, Cambridge, Massachusetts, U.S.A., from present address: Department of Applied Mathematics, Indian Institute of Science, Bangalore-12, India.

‡ Department of Applied Mathematics, Indian Institute of Science, Bangalore-12, India.

§ In Chakraborty (1964, quoted from Tassoul 1967) the presence of surrounding material of density ρ_0 is taken into account in deriving the dispersion relation but is discussed only for the case $\rho_0 = 0$.

and

$$\{(\omega + kV_1)^2 - k^2 V_A^2\} \coth \theta + \tau \{(\omega + kV_2)^2 - k^2 V_B^2\} + 4\pi G\rho(1-\tau) \left(-1 + \frac{1-\tau}{1+\tanh\theta}\right) = 0,$$
(2)

where

$$au =
ho_0 /
ho \,, \qquad heta = kh \,, \qquad V_{
m A}^2 = rac{\mu_0 \, H_1^2}{4 \pi
ho} rac{1}{4 \pi G
ho h^2} \,, \qquad V_{
m B}^2 = rac{\mu_0 \, H_2^2}{4 \pi G
ho h^2} rac{1}{4 \pi G
ho h^2} \,,$$

In the following analysis we shall assume $\tau < 1$ and finally point out some important results that appear due to the presence of relative motion in the case $\tau > 1$.

Symmetric Perturbations (i) $H_1 = H_2 = 0$

The dispersion relation (2) in this case, gives

$$\omega = -k rac{V_1 + V_2 au anh heta}{1 + au anh heta} \pm rac{(4\pi G
ho anh heta)^{rac{1}{2}} arDela^{rac{1}{2}}}{1 + au anh heta},$$
(3)

where

$$\varDelta = \{(1 - \tau)(1 + \tau \tanh \theta)G(\theta) - \theta^2 \tau U^2\},$$

$$G(heta) = \left(heta - rac{1- au}{1+ anh heta}
ight), \qquad U^2 = rac{(V_2 - V_1)^2}{4\pi G
ho h^2}.$$

When U = 0, and if θ' denotes the root of the equation $G(\theta) = 0$, then the system is stable for $\theta > \theta'$ and unstable for $\theta < \theta'$ (Uberoi 1963), the instability arising due to self-gravitational force. Considering the case when $U \neq 0$, we find that the presence of the relative streaming velocities of the fluids, however small, alter the stability criterion as seen below.

From (3) we note that Δ is negative for all values of $\theta \leq \theta'$. For $\theta > \theta'$ the function $G(\theta)$ is a positive monotonically increasing function, increasing as θ . As $\tau U^2\theta^2$ increases as θ^2 , Δ is negative for large θ . Hence, depending on the value of τU^2 either Δ will be negative for all θ or it will have two roots θ_1, θ_2 such that Δ is positive for $\theta_1 < \theta < \theta_2$ and negative for all other values of θ . Thus, for fixed τ , depending on the value of U^2 either the system is overstable for all wavelengths or there exists a range of values of wave numbers $\theta_1 \leq \theta \leq \theta_2$ for which the system is stable. We note that as U^2 increases, i.e. as the kinetic energy due to the relative motion of the two fluids increases in comparison to the gravitational energy, this range of stability decreases. The range of instability is $0 < \theta < \theta_1$ and $\theta > \theta_2$, which shows that the waves are either very long or very short to be stabilized. Here we point out that the instability of long waves is due to self-gravitational force and of small waves is due to the relative motion of the fluid layers.

Table 1 gives critical values θ_1 , θ_{1m} , $\omega_m(\theta = \theta_{1m})$, and θ_2 for various values of τ and U^2 . We note the following points: (1) As U^2 and τ increase, the range of stability decreases until this range becomes zero and the system becomes overstable for all θ . (2) As U^2 increases, the critical wavelength $\lambda^* = (2\pi h/\theta_1)$ associated with

SHORT COMMUNICATIONS

the long wavelength instability decreases. Hence, the presence of the relative speed (V_2-V_1) enhances the instability mainly arising from self-gravitational forces. (3) The maximum wavelength $\lambda^* = (2\pi h/\theta_2)$, associated with the short wavelength KH instability, increases as the value of U^2 and τ is increased. (4) For the case of long wavelength instability due to self-gravitational force, the wave number θ_{1m} associated with the maximum mode of instability and the characteristic frequency ω_m at θ_{1m} increase with the increase in U^2 . Hence, the dimensions of the fragments into which the layer tends to break up gravitationally and the characteristic time $t = (2\pi/\omega_m)$ of this breakup are decreased by the presence of the relative motion.

TABLE 1

 θ_1 , θ_{1m} , ω_m , and θ_2 as functions of τ and U^2 for symmetric case in absence of magnetic field

 θ_1 and θ_{1m} are the wave numbers at which the instability occurs and at which it is a maximum, ω_m is the frequency at θ_{1m} , and θ_2 is the minimum wave number at which the KH instability sets in

U^2		au = 0)•1		$ au=0\!\cdot\!3$			
	$ heta_1$	θ_{1m}	$\omega_{ m m}(4\pi G ho)^{-1}$	θ_2	θ_1	θ_{1m}	$\omega_{\rm m}(4\pi G ho)^{-1}$	θ_2
0	0.58801	0.27001	0.31974		0.48401	0.22201	0.22491	
$0 \cdot 2$	0.59400	$0 \cdot 27201$	0.32031	$49 \cdot 04595$	0.49800	$0 \cdot 22601$	$0 \cdot 22619$	$14 \cdot 80799$
$0 \cdot 5$	0.60401	$0 \cdot 27401$	0.32119	$19 \cdot 33999$	0.52400	$0 \cdot 23401$	$0 \cdot 22825$	$5 \cdot 69400$
1	0.62001	$0 \cdot 27801$	0.32270	$9 \cdot 42800$	0.58601	$0 \cdot 24801$	$0 \cdot 23209$	$2 \cdot 62000$
2	0.66201	$0 \cdot 29001$	$0 \cdot 32592$	$4 \cdot 45001$				
5							<u> </u>	
		au =	= 0.5			au =	= 0·7	
0	0.37001	0.17201	0.14153		0.24201	0.11601	0.07002	
$0 \cdot 2$	0.39200	0.17801	0.14309	$7 \cdot 23999$	0.26800	0.12201	0.07141	$3 \cdot 48599$
$0 \cdot 5$	$0 \cdot 43400$	0.19001	$0 \cdot 14573$	$2 \cdot 71599$	0.33200	0.14001	0.07405	$1 \cdot 15600$
1	0.63601	$0 \cdot 22001$	0.15141	0.96801				
2				Rest Control of Contro				
5					—	—		

(ii) $H_1 \neq 0, \ H_2 \neq 0$

From the dispersion relation (2) we obtain

$$\omega = -k \frac{(V_1 \coth \theta + V_2 \tau)}{\tau + \coth \theta} \pm \frac{(4\pi G\rho)^{\frac{1}{2}} (\tanh \theta)^{\frac{1}{2}} \varDelta^{\frac{1}{2}}}{\tau \tanh \theta + 1}, \qquad (4)$$

where

$$\Delta = \theta^2 \Phi + G(\theta), \tag{5}$$

$$\Phi = \operatorname{coth} heta [V_{\mathrm{B}}^2 au^2 \operatorname{tanh}^2 heta - \{U^2 - (V_{\mathrm{A}}^2 + V_{\mathrm{B}}^2)\} au \operatorname{tanh} heta + V_{\mathrm{A}}^2],$$

$$G(heta) = (1\!-\! au)(au anh heta \!+\! 1) \!\left(heta \!-\! rac{1\!-\! au}{1\!+\! anh heta} \!
ight).$$

As Φ is quadratic in $\tanh \theta$, it is easy to show that when $U^2 < (V_{\rm A} + V_{\rm B})^2$, Φ is positive for all positive values of θ ; when

$$(V_{\rm A} + V_{\rm B})^2 < U^2 < U^{st 2} \equiv (au\!+\!1)/ au(V_{\rm A}^2\!+\! au V_{\rm B}^2)\,, \qquad {
m and} \qquad au > V_{\rm A}/V_{\rm B}\,,$$

 Φ is positive for $\theta < \theta_1$ and $\theta > \theta_2$, while it is negative when $\theta_1 < \theta < \theta_2$; when

$$(V_{\rm A} + V_{\rm B})^2 < U^2 < U^{*2}, \qquad {
m but} \qquad \tau < V_{\rm A}/V_{\rm B},$$

 Φ is positive for all θ ; when $U^2 > U^{*2}$, Φ is positive if $\theta < \theta_1$ and negative if $\theta > \theta_1$, where θ_1 and θ_2 are given by

$$\tanh\theta_{1,2} = (2V_{\rm B}^2\tau)^{-1}[\{U^2 - (V_{\rm A}^2 + V_{\rm B}^2)\} \mp \{U^2 - (V_{\rm A} - V_{\rm B})^2\}^{\frac{1}{2}}\{U^2 - (V_{\rm A} + V_{\rm B})^2\}^{\frac{1}{2}}].$$

TABLE 2

 θ' , $\theta'_{\rm m}$, $\omega_{\rm m}$, and θ'' as functions of τ , U^2 , $V^2_{\rm A}$, and $V^2_{\rm B}$ for symmetric case in presence of magnetic field

 θ' and θ'_m are the wave numbers at which the instability occurs and at which it is a maximum, ω_m is the frequency at θ'_m , and θ'' is the minimum wave number at which the KH instability sets in

		au =	= 0.5			$ au=0\cdot7$					
U^2	θ΄	$\theta'_{\rm m}$	$\omega_{\rm m}(4\pi G ho)^{-\frac{1}{2}}$	θ''	heta'	$\theta'_{\rm m}$	$\omega_{\rm m}(4\pi G ho)^{-\frac{1}{2}}$	θ''			
			V	$r_{\rm A}^2 = 0.5,$	$V_{\rm B}^{2} = 2$			-			
0	0.18001	0.09001	0.10616		0.09001	0.04601	0.04539				
2	0.20401	0.10001	0.10967		0.10001	$0 \cdot 05001$	0.04691				
4	0.24601	0.11401	0.11441		0.12201	0.05801	0.04892	<u> </u>			
$4 \cdot 7$	0.27401	0.12201	0.11657	$7 \cdot 24200$	0.13601	0.06001	0.04985	$8 \cdot 34800$			
4.9	0.28601	$0 \cdot 12401$	$0 \cdot 11726$	$3 \cdot 47800$	$0 \cdot 14001$	0.06201	0.05014	$2 \cdot 23600$			
$5 \cdot 0$	0.29201	$0 \cdot 12601$	$0 \cdot 11762$	$2 \cdot 71600$	$0 \cdot 14401$	0.06201	0.05030	$1 \cdot 28601$			
$5 \cdot 2$	0.30601	0.12801	0.11838	$1 \cdot 81600$	$0 \cdot 15201$	0.06401	0.05062	0.65201			
$5 \cdot 4$	0.32601	$0 \cdot 13201$	0.11918	$1 \cdot 29001$	0.16001	0.06601	0.05096	0.47401			
				$V_{\rm A}^2 = 2, V$	$_{ m B}^2 = 1$						
Ö	0.09001	0.04401	0.07434		0.03801	0.01801	0.02884				
2	0.09201	0.04601	0.07493		0.03801	0.01801	0.02897				
4	0.09601	0.04601	0.07555		0.03801	0.02001	0.02914				
6	0.10001	0.04801	0.07624		0.04001	0.02001	0.02933	_			
8	0.10401	0.05001	0.07696	$2 \cdot 86199$	0.04201	0.02001	0.02951	0.92601			
10	0.11001	0.05201	0.07775	0.89001	0.04201	0.02001	0.02969	0.51801			
12	0.11801	0.05401	0.07862	0.56401	0.04401	0.02001	0.02988	0.36401			
14	0.12801	$0 \cdot 05601$	0.07460	$0 \cdot 40001$	$0 \cdot 04601$	$0 \cdot 02201$	0.03009	0.27801			

The analytical behaviour of the function Φ and the numerical estimates of $\Phi(\theta)$ and $G(\theta)$, for a few chosen values of V_A^2 , V_B^2 , and τ , show that for $0 < U^2 < U^{*2}$ there exists a critical wave number θ_c such that $\Delta(\theta)$ is negative for $\theta > \theta_c$. Hence, from (5) we note that the system is stable for wavelengths $\lambda < \lambda_c$ (= $2\pi h/\theta_c$) and is overstable for wavelengths greater than λ_c .

When $U^2 > U^{*2}$, we find that there exists a range of wave numbers, say $\theta' < \theta < \theta''$ for which $\Delta(\theta)$ is positive and is negative for all other values. But as U^2 is increased, the range of wave numbers for which $\Delta(\theta)$ is positive decreases and

 $\mathbf{934}$

for higher values of U it becomes negative for all θ . Hence, depending on the values of U^2 , the system is either stable for $\theta' < \theta < \theta''$ and overstable for $\theta < \theta'$ and $\theta > \theta''$ or is overstable for all values of θ . Once again we find that the waves are very long or very short to be stabilized.

TABLE 3

U^2	$ heta_{ m c}$									
Ũ	$ au=0\!\cdot\!1$	$0\cdot 2$	$0 \cdot 4$	0.6	0.8					
$0 \cdot 2$	49 · 04595	23.59397	10.18999	$5 \cdot 12599$	$2 \cdot 17199$					
0.5	$19 \cdot 33999$	$9 \cdot 18200$	$3 \cdot 87601$	$1 \cdot 94800$	0.9480					
1	$9 \cdot 42800$	$4 \cdot 36001$	1.78600	0.98801	0.56401					
2	$4 \cdot 45001$	$1 \cdot 92600$	0.84201	0.55401	0.35801					
5	$1 \cdot 39801$	0.58401	0.36801	0.29001	0.20601					

Hence, we find that the presence of a magnetic field suppresses the instability associated with short wavelengths when $U^2 < U^{*2}$, but due to self-gravitational forces the instability at long wavelengths persists. When the relative speed exceeds the critical speed U^* , the short wavelength instability sets in and we again have two ranges of instability for very short and very long wavelengths. As U is increased,

MINIMUM WAVE NUMBER σ_c AT WHICH INSTABILITY SETS IN AS A FUNCTION OF τ , U^2 , V^2_A , AND V^2_B FOR ASYMMETRIC CASE IN PRESENCE OF MAGNETIC FIELD											
172	$ heta_{\mathbf{c}}$										
0-	$ au=0\!\cdot\!5$	$0 \cdot 7$	0.5	0.7							
	$V_{\mathbf{A}}^{2} = 0.5$, $V_{\rm B}^{2}=2$	$V_{A}^{2} = 2,$	$V_{\rm B}^2 = 1$							
0				-							
4			<u></u>								
6	0.93001	0.80601									
8	0.49801	$0 \cdot 46201$	$2 \cdot 46000$	$0 \cdot 43601$							
10	0.36601	$0 \cdot 34401$	0.37201	0.30001							
12	0.29601	0.28001	0.28401	0.24201							
14	$0 \cdot 25401$	0.24001	0.23801	0.20601							
16	$0 \cdot 22401$	$0 \cdot 21201$	0.20801	0.18201							

TABLE 4

the range of wave numbers for which the system is stable decreases till the system is overstable for all wavelengths. We note from equations (3) and (4) that the real frequency of oscillation is not affected by the magnetic field. Table 2 gives the critical values θ' , $\theta'_{\rm m}$, $\omega_{\rm m}(\theta = \theta'_{\rm m})$, and θ'' for various values of τ , U^2 , $V^2_{\rm A}$, and $V^2_{\rm B}$. We note that the increase in relative motion decreases the dimensions of the fragments, into which the layer tends to break due to gravitational instability, and also the characteristic time associated with this breakup, whereas the increase in total magnetic

SHORT COMMUNICATIONS

pressure has the tendency to increase the value of $\lambda_{\rm m}$ and $t = (2\pi/\omega_{\rm m})$. We also note that for values of U^2 very close to U^{*2} the maximum wavelength $(= 2\pi h/\theta'')$ for which the system is unstable due to KH instability has a very small value.

			(a) Symmetric	c Case						
		au=2			au=4					
U^2	$ heta_{\mathbf{c}}$	θ_{m}	$\omega_{\rm m}(4\pi G ho)^{-\frac{1}{2}}$	$\theta_{\mathbf{c}}$	$\theta_{\mathbf{m}}$	$\omega_{\rm m}(4\pi G \rho)^{-1}$				
			$V_{\rm A}^2 = 0.5, V_{\rm A}^2$	${}^{2}_{B} = 2$						
0	0.44201	0.25801	0.33231	0.99601	0.30601	0.97123				
2	0.61401	0.35801	0.37940	$1 \cdot 15601$	$0 \cdot 40601$	$1 \cdot 00795$				
4	1.07201	0.55801	$0 \cdot 47755$	$1 \cdot 35601$	0.50601	$1 \cdot 04908$				
6	$2 \cdot 53801$	$1 \cdot 05601$	0.71090	1.70601	0.60601	$1 \cdot 10692$				
8				$2 \cdot 41001$	$0 \cdot 80601$	$1 \cdot 19082$				
10				$7 \cdot 30601$	$2 \cdot 20601$	$1 \cdot 37074$				
12										
			$V_{ m A}^2=2,~V_{ m E}^2$	$_{3} = 1$						
0	0.38801	0.15401	0.27868	$1 \cdot 10601$	$0 \cdot 40601$	$0 \cdot 99548$				
2	0.55401	0.25401	0.31017	$1 \cdot 40601$	0.40601	$1 \cdot 00925$				
4	1.06401	0.55401	0.39105	$1 \cdot 90601$	0.60601	$1 \cdot 06945$				
6				$3 \cdot 59000$	$1 \cdot 10601$	$1 \cdot 18304$				
8						—				
10										
12				<u> </u>						
			(b) Asymmetr	ric Case						
			$V_{\Lambda}^2 = 0.5, V$	${}^{72}_{B} = 2$						
0	0.40201	0.15801	0.29811	0.90601	$0 \cdot 40601$	0.73512				
$\overset{\circ}{2}$	0.47001	0.25801	0.30876	$1 \cdot 00601$	$0 \cdot 40601$	0.75287				
4	0.61801	0.25801	$0 \cdot 32951$	$1 \cdot 10601$	0.50601	0.77781				
6	$2 \cdot 21801$	$1 \cdot 25601$	$0 \cdot 36544$	$1 \cdot 50601$	0.60601	0.81170				
8				$2 \cdot 30601$	0.90601	0.87634				
10				$7 \cdot 20601$	$3 \cdot 30601$	$1 \cdot 32504$				
12										
			$V_{\rm A}^2 = 2, V_{\rm L}^2$	$_{ m B}^2=1$						
0	0.54001	$0 \cdot 25401$	0.36037	$1 \cdot 13601$	0.50601	$0 \cdot 83563$				
2	0.69401	0.35401	0.38380	$1 \cdot 39000$	0.60601	0.87318				
4	$1 \cdot 07401$	$0 \cdot 45401$	$0 \cdot 43263$	$1 \cdot 89000$	0.80601	0.93047				
6				$3 \cdot 50601$	$1 \cdot 50601$	$1 \cdot 07484$				
8				—						
10										
12						—				

	TABLE 5												
θc,	$\theta_{\rm m}$,	AND	ωm	\mathbf{AS}	FU	NCT	IONS	OF	τ,	U^2 ,	$V_{\mathbf{A}}^{2}$,	AND	$V_{\rm B}^2$
				1	× 6	γ		- a					

Asymmetric Perturbations

We do not wish to present the detailed mathematical analysis for asymmetric perturbations as the results follow from physical interpretation. As seen in the

symmetric case, the KH instability and the gravitational instability both act independently. Hence, as the layer in the case U = 0 is gravitationally stable for asymmetric perturbations (Uberoi 1963), the only instability that appears when $U \neq 0$ is the short wavelength KH instability. The results, which are similar to those of Chandrasekhar (1961) are as follows.

In the absence of a magnetic field we have a critical wave number θ_c such that for $\theta < \theta_c$ the system is stable, while for $\theta > \theta_c$ the system is overstable. Table 3 gives the values of θ_c for various values of τ and U^2 . We note that as U^2 increases the range of stable wave numbers decreases, i.e. the maximum wavelength for which the system is unstable increases with U. Increase in τ also increases the maximum wavelength of instability. In the presence of a magnetic field we conclude that when $0 \leq U^2 < U^{*2}$, the system is stable for all wave numbers but, when $U^2 > U^{*2}$, it is stable for all wave numbers $\theta < \theta_c$ and overstable for $\theta > \theta_c$. Hence, the magnetic field is able to suppress the KH instability when

$$(V_2 - V_1)^2 < (\rho_0 + \rho)(H_1^2 + H_2^2)/(4\pi\rho_0\rho)$$

Table 4 gives the values of θ_c for various values of V_A , V_B , τ , and U^2 .

Considering the case $\tau > 1$ in the presence of a magnetic field, we find both for symmetric and asymmetric perturbations that when $U^2 < U^{*2}$, the system is overstable for θ less than a certain θ_c but, when $U^2 > U^{*2}$, the system becomes overstable for all wavelengths. Thus, when the surrounding material is denser we do not have two ranges of instability for any value of U. The magnetic field suppresses the short wavelength instability for $U^2 < U^{*2}$ and makes the potentially unstable equilibrium arrangement stable for wavelengths $\lambda < \lambda_c$; but as the relative speed between the two fluid layers increases, the system acquiring the extra source of kinetic energy becomes overstable. We note that for $\tau > 1$ the system behaves alike both in the presence of symmetric and asymmetric perturbations. Table 5 gives the values of $\theta_{\rm c}$ and $\theta_{\rm m}$ and $\omega_{\rm m}$, the wave number and characteristic frequency at $\theta_{\rm m}$ associated with the maximum mode of instability, for various values of $V_{\rm A},~V_{\rm B},~ au>1,$ and We note that the wavelength $\lambda_{\mathrm{m}}=2\pi\hbar/\theta_{\mathrm{m}}$ and the characteristic time U^2 . $t=2\pi/\omega_{\rm m}$ decrease as the relative motion is increased, and as the value of U^2 approaches the critical value U^{*2} the values of $\lambda_{\rm m}$ and t become strikingly small.

We wish to acknowledge helpful discussions with Professor P. L. Bhatnagar. Our particular thanks are due to Dr. G. F. Anderson for help in the numerical calculations. One of us (C.U.) is grateful to the Donald H. Menzel Fellowship for support in this work.

References

CHANDRASEKHAR, S. (1961).—"Hydrodynamic and Hydromagnetic Stability." (Clarendon Press: Oxford.)

TASSOUL, J. L. (1967).-Mon. Not. R. astr. Soc. 137, 1.

UBEROI, C. (1963).-J. Indian Inst. Sci. 46, 11.