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Summary 

The following theorem and corollaries are proved. If the two-beam column 
approximation theory of electron microscope image formation is assumed and if the 
displacement field of the object is analytic with zero derivative at infinity, and such 
that there is a direction in the object along which displacements are constant, then 
from an electron micrograph that records intensities but no phase information 
there is an explicit and unique reconstruction of the component of the displacement 
field of the object in the direction of the diffracting vector, except possibly in some 
specified singular cases for which the reconstruction cannot be started uniquely. 

The vector displacement field can be reconstructed from three micrographs 
taken with non-coplanar diffracting vectors. 

Three micrographs taken with non·coplanar diffracting vectors uniquely 
identify a defect. 

Bright field and dark field micrographs contain identical information since 
either can be used for reconstruction. 

If two micrographs have identical intensity distribution then they have 
identical phase distribution. 

A blank micrograph can only be from a null displacement component field. 

1. INTRODUCTION 

With the introduction of the computer generation of electron micrographs of 
defects in crystals (Head 1967; Humble 1968) there has come a fuller realization of 
the many and varied types of image that any particular class of defect, e.g. dis
locations, can have. One immediate use of this variety has been the identification 
of defects by the matching of experimental images taken under a range of experimental 
conditions against a corresponding range of theoretical pictures for a number of pos
sible defects which, it is hoped, includes the unknown object. It has usually been 
possible by this trial and error method to identify a defect by elimination, i.e. for 
all trial defects except one, at least one theoretical picture is in obvious disagreement 
with the corresponding experimental picture. However, this does not really prove 
the identification, for there might be another defect that was not considered which 
would also have a set of theoretical pictures that would match. This is particularly 
so as an electron micrograph only records intensities and not phases so that there 
is the apparent possibility of two defects giving identical intensity distributions 
but different phase distributions. 
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II. BASIC THEOREM 

As an initial step in the examination of the question of the uniqueness of 
electron micrographs, the following theorem is proved in this paper. 

If (i) the two-beam column approximation theory of electron microscope image 
formation is assumed and if the displacement field R of the object is (ii) analytic with 
zero derivative at infinity and (iii) such that there is a direction in the object along which 
displacements are constant, then from an electron micrograph that records intensities 
but no phase information there is an explicit and unique reconstruction of the component 
of the displacement field of the object in the direction of the diffracting vector g, except 
possibly in some specified singular cases for which the reconstruction cannot be started 
uniquely. 

The assumption (i) of an approximate theory means that this therorem is 
only strictly true for computer-generated micrographs which have been calculated 
using just this theory. Any application to experimental micrographs will depend 
on how good an approximation this theory really is. 

The assumption (iii) is equivalent to restricting consideration to displacement 
fields for which a generalized cross section can be defined (Head 1967; Humble 
1968). All the types of computed micrographs in Head (1967) and Humble (1968), 
covering a range of dislocation and stacking fault configurations, would therefore 
be included. 

The assumption (ii) will be considered in more detail in Section V. It will 
include dislocations but exclude stacking faults, since the displacement fields of the 
latter have arbitrary discontinuities and are not analytic. 

III. IMAGE FORMATION 

The method that has been used (Head 1967) in the calculation of theoretical 
micrographs of displacement fields satisfying assumption (iii) above suggests that 
there is a close relationship between intensities along each line of the picture that is 
parallel to the projection of the constant direction. In this section we consider a 
transformation of the differential equations of Howie and Whelan (1961) describing 
image formation, into a form that emphasizes this relationship. 

The Howie-Whelan equations for <Po and <pg, the amplitudes of the direct and 
diffracted beams, can be written in many equivalent ways (e.g. Hirsch et al. 1965), 
and for simplicity of analysis we take the following form. 

d<po = Q-I. 
dz 'l'g, (1) 

where 

(:3(z) = g.R(z), 

and the unit of length is gg!Tr. 
Anomalous· absorption is included in Q but normal absorption is ignored as, 

initially, specimens of constant thickness t are to be considered and normal absorption 
will just multiply amplitudes by a constant factor exp( -tgg!g~). 
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In Figure 1 is shown a longitudinal section through an untilted parallel-sided 
object. This section plane is defined as that containing the beam direction and the 
constant direction of the displacement field R of the object. This plane becomes one 
line of the picture by projection in the direction of the electron beam. The classical 
method of image computation is to calculate the intensity at a point on this picture 
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Fig. I.-Longitudinal oross seotion of 
parallel-sided untilted objeot of thiok
neBS t. The oonstant direotion of the 
displaoement field is indioated. 

line by integrating the equations (1) down the column, such as AB, which projects 
into the image point, starting at A with an incident beam cpo = 1, cpg = 0 and 
finishing at B with bright field intensity I = cpocp~ and dark field intensity J = cpgcp;. 

and 

Suppose P(y) is the scattering matrix of the column AB at y, that is, 

[
POO(Y) POg(y)] 

P(y) = 
P go(y) P gg(y) 

( CPO) = P(y)(CPO) , 
cpg out cpg in 

(2) 

(3) 

and, for convenience, suppose that the unit of length in the y direction is taken as 
(cot 8)gg/TT so that dy/dz = -1 along the constant direction of the displacement 
field. 

Then the scattering matrix P(y+Sy) of a neighbouring column at y+1ly is 
given by 

[ 
1 Qily ] 

P(y+Sy) = X P(y) 
QSy 1 +i Sy{2w+2TT~'(Y)} 

[
1 Qily ]~ 

X QSy l+i Sy{2w+2TTpt(y-t)} , 
(4) 

i.e. the displacements in the column at y+ Sy are the displacements in the column 
at y with the addition of material at the bottom surface of thickness Sz (= Sy) 
which contains displacements ~(y) and the removal from the top surface of Sz of material 
with displacements ~(y-t), this notation indicating that the latter was at the bottom 
surface at y-t. 
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On passing to the limit By _ 0, equation (4) gives the following differential 
equations for the components of P, with a prime denoting differentiation with 
respect to y. 

P~ = Q(PgO-POg) , 

P~g = Q(Pgg-Poo) -Pogi{2w+21T,8'(y-t)} , 

P;o = Q(POO-Pgg) +Pgoi{2w+21T,8'(y)} , 

P;g = Q(POg-Pgo ) +Pgg 21Ti{,8'(y) -,8'(y-t)}. 

Integration of these equations would give the bright field intensity 

a.nd dark field intensity 
* J(y) = PooPoo 

* J(y) = PgOPgO 

(5) 

along one line of the picture, knowing ,8(y) the component of the displacement field 
R in the direction of the diffracting vector g, specified as a function of y along the 
bottom of the section. 

To start the integration it is necessary to know initial values of P at some y. 
One choice could be a column which is known to pass through undistorted crystal 
for which 

(6) 

where 

CXl,2 = iw±(Q2 _w2)! . 

There is one explicit integral satisfying (5) which is given by 

POOPgg -POgPgO = exp[2iwt+21Ti{,8(y) -,8(y-t)}]. (7) 

IV. OBJECT RECONSTRUCTION 

The previous section considered the generation of an image function J(y) from 
a displacement component function ,8(y). The problem of reconstructing the function 
,8(y) from a given J(y) is now considered and it is assumed that all parameters (such 
as thickness, anomalous absorption, deviation from the Bragg condition, etc.) are 
known but that all that is known about the displacement field is that assumptions 
(ii) and (iii) of the basic theorem are true. 
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Referring to Figure 1, suppose that the process of reconstruction started at 
y = - 00 and is proceeding in the direction of increasing y and has reached AB. 
Then the only quantity that is not known in the differential equations (5) is fJ(y), 
the unknown displacement component which is just entering the lower surface. The 
quantity fJ(y-t) is of course known since it was determined when it entered the 
lower surface at y-t. 

A relationship connecting fJ(y) and the known I(y) can be derived, starting with 
the definition 

* I(y) = PooPoo ' 

Differentiating with respect to y gives 

on using the differential equations (5) to eliminate the derivatives. 
A further differentiation and elimination of derivatives gives 

* * * * +271'i fJ'(y){QPOO P gO -Q* PooP gO}+271'ifJ'(y-t){QPoOPOg -Q* POOPOg}. (8) 

Provided the coefficient of (J'(y) in (8) is not zero (and this possibility is considered 
in the next section) then this equation can be solved for fJ'(y). If this expression for 
fJ'(y) is substituted in (5) then the resulting set of differential equations can be used 
for reconstruction of the scattering matrix P as a function of y and so of (J'(y) from 
(8). Since it is assumed that (J'(y) = 0 at infinity, the initial values of P at y = - 00 

will be given by (6). 
It is also possible to reverse the direction of reconstruction by starting at 

y = + 00 and moving to the left. In this case (J'(y) is known, having already been 
reconstructed, and (J'(y-t) is unknown. But (8) can be used in the same way to 
eliminate fJ'(y-t) from (5) to give another suitable set of differential equations. 

In a similar manner, starting with the dark field intensity 

* J(y) = P gOPgO ' 

two differentiations give 

" * * * * * J = 2QQ*(Poo -Pgg)(Poo -Pgg )+2Q2PgO(pgO -POg)+2Q*2PgO(PgO -POg) 

and this too can be used to eliminate either (J'(y) or (J'(y-t) from the differential 
equations (5). 
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V. SINGULAR POINTS 

The method of reconstruction that has been described comes to an indeterminate 
situation if the appropriate coefficient of f3' in (8) or (9) becomes zero. There are 
therefore four different cases for such a singular point in the reconstruction: 

Bright field, y increasing, * * * QPOOPgO -Q POOPgO = o. 

Bright field, y decreasing, * * QPOOPOg -Q* POOPOg = o. 
(10) 

Dark field, y increasing, 

Dark field, y decreasing, 

We first consider the possibility that a singular point occurs after a finite 
amount of f3' has been reconstructed. Then if f3' is a predictable function, i.e. if its 
behaviour for all y can be predicted knowing its behaviour over any finite interval, 
the reconstruction is theoretically complete. The predictable functions of a real 
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Fig. 2.-Singular combinations of t 
and w for undistorted crystal and 
anomalous absorption gyl g; = O· 1 : 

-- Bright field for both y increasing 
and y decreasing. 

- - - Dark field for y decreasing . 

Dark field for y increasing is given by 
the mirror image of the dashed curves 
about w = O. t is in units of gylTT. 

variable are the analytic functions, i.e. the function and all its derivatives exist for 
all y and in addition it can be expressed as a Taylor series expansion about every y. 
For example, a dislocation gives an analytic function except for the picture line that 
goes exactly along the core, but in fact it is even simpler, for {J' is a rational function 
of y and the form of the function is known to be the ratio of a polynomial of the 
fifth degree to a polynomial of the sixth degree. There are thus 12 constants to be 
determined and this can be done if f3' is known at just 12 points. In general if it is 
assumed that f3' (and therefore (3) is an analytic function, the possible occurrence 
of a singular point during reconstruction does not destroy the uniqueness of the 
reconstruction. 

A second possibility is that the reconstruction cannot even be started because 
of a singular point, i.e. the initial values of P for an undistorted crystal (equations (6)) 
cause the appropriate coefficient (10) to be zero. It will be seen that both bright 
field coefficients will be zero together, since for this case POg = Pgo. The parameters 
that are involved are t, W, and the anomalous absorption gglg~. If the anomalous 
absorption is zero then all four conditions of (10) are satisfied simultaneously for the 
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same combinations of t and w, which are (i) for all t if w = 0, and (ii) for t(1 +w2 )i = nTT 
with n an integer. For the more typical case gglg~ = 0·1, Figure 2 shows the com
binations of t and w that give singular starting values. It will be seen that they are 
well away from the combinations that are normally used in practice. 

VI. DISCUSSION 

We have now essentially proved the theorem since we have shown that, from 
one line of the micrograph, the longitudinal section of the displacement component 
field which projects into it can be reconstructed explicitly and uniquely. The whole 
displacement component field can thus be reconstructed section by section from all 
lines of the micrograph that are parallel to the projection of the constant direction. 

The following corollaries are immediate. 

(i) The vector displacement field can be reconstructed from three micrographs taken with 
non-coplanar diffracting vectors. 

(ii) Three micrographs taken with non-coplanar diffracting vectors uniquely identify 
a defect. 

(iii) Bright field and dark field micrographs contain identical information; for either 
can be used for reconstruction and both can be calculated from the displacement field. 

(iv) If two micrographs have identical intensity distributions then they have identical 
phase distributions since they come from identical displacement component fields. 

(v) A blank micrograph can only be from a null displacement component field. 

The importance of assuming a well-behaved displacement field is illustrated 
by the last corollary. When displacement fields are considered which contain step 
discontinuities (stacking faults) then it is well known that this corollary is not true 
and in fact none of the corollaries nor the theorem are then true. The problems of 
reconstruction of such discontinuous displacement fields will be considered in a 
subsequent paper. 

The emphasis in this paper has been on the uniqueness properties of computer
generated electron micrographs and it is obvious that some of the concepts involved 
may not be very suitable for a practical reconstruction, e.g. the double differentiation 
of an experimental I(y) or the analytic continuation of a function past a singular 
point of the reconstruction. Although the chance of encountering an exact singular 
point is small, it will be seen from (8) and (9) that in the neighbourhood of a singular 
point the accuracy of determination of fi' would be poor. However, there are two 
constraints on the displacement field which have not been made use of and which 
would give some check on the accuracy of a practical reconstruction. Firstly, it 
would usually be the case that the displacement field would be an elastic one and it 
would be known that there are no body forces. In this case the displacements must 
satisfy the elastic equations of equilibrium for zero body force. Secondly, for each 
picture line, the field can be reconstructed in two ways, y increasing and y decreasing, 
and these must agree. This is equivalent to a closure condition that the reconstruc
tion, having started in undistorted crystal at, say, y = - 00, must tend to undistorted 
crystal again at y = + 00. This would also seem to imply that not all functions of 
yare possible image functions I(y) or J(y) but that these come from a restricted class. 
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The restriction that has been made to the consideration of a parallel-sided 
untilted object is not fundamental and reconstruction is possible for any object 
of known shape. Suppose that z = ft(y) and z = fb(y) are the equations defining the 
top and bottom surfaces of the object section. Then (4) is modified by replacing 
oy in the first matrix on the right-hand side by oy{l+f~(y)} and in the third matrix 
by oy{1 + f~(y)} and also by taking account of the variation of normal absorption due 
to the changing thickness of the object. Passing to the limit oy --'.>- 0 now gives a more 
complicated set of four differential equations for the elements of P and equations 
(8) and (9) will have more complicated equivalents, but the general procedure remains 
the same. 

Finally we give a simple example of the non-uniqueness that becomes possible 
when there is a singular combination of t and w. Consider the case of zero anomalous 
absorption, so that Q = i, and with w = o. Then, considering the equations (1) with 
initial conditions g,o = 1, g,g= 0, if g,o(z) and g,g(z) are the solutions for any function 
{3(z) then g,:(z) and -g,;(z) are the solutions for the function -{3(z), so that both 
bright and dark field images have identical intensities for any t. Thus, for example, 
two dislocations with Burgers vectors +b and -b would have identical images in 
either bright or dark field. 
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