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Summary 

Approximate forms are developed for the X- and Y-functions of isotropic 
scattering of Chandrasekhar in terms of the well-tabulated H -function. The approxi­
ml].tions that are asymptotically correct for slabs of large thickness are compared 
with available tabulated values. 

I. INTRODUCTION 

The functions X(fL) and Y(fL) were introduced by Chandrasekhar (1947, 1948) 
for study of the transfer of radiation through finite a.tmospheres. They were applied 
to problems of neutron transport by Auerbach (1961). Some numerical tables were 
given by Chandrasekhar (1952) and these tables were recalculated with improved 
accuracy and over an extended range by Mayers (1962), who discussed the numerical 
difficulties encountered when calculating the functions. 

In the present paper approximations are derived (valid for thick media) in 
terms of the simpler and well-tabulated H-function. 

II. ApPLICATION OF THE FUNCTIONS TO NEUTRON TRANSPORT THEORY 

The X- and Y-functions were originally defined as the solutions of the pair 
of simultaneous nonlinear integral equations 

(1) 

(2) 

They make their appearance in neutron transport theory when solutions are 
sought for the angular flux reflected from or transmitted through an infinite slab 
that has thickness T and unit total cross section, and that isotropically scatters 
neutrons with scattering cross section c. 
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In the interior of the slab the one-velocity transport equation is then 

(3) 

in standard notation. If a monodirectional beam of neutrons impinges on the slab 
at x = ° and if the plane x = T is a free boundary we have the boundary conditions 

cP(O, 11-) = 8(11--11-0)' cP(T,-I1-) = 0, ° < 11-, 11-0 ~ 1 , 

8(11-- 11-0) being a Dirac delta function. 
The emerging angular flux distributions can then be written 

cP(O, -11-) = tl1--1 f 8(11-,11-') cP(O, 11-') dl1-' 

= tl1--1 8(11-,11-0) , 

cP(T,I1-) = exp( -TII1-) 8(11--11-0) +tl1--1 f T(I1-, 11-') cP(O, 11-') dl1-' 

= exp( -TII1-) 8(11--11-0) +tl1--1 T(I1-, 11-0), 

(4) 

(5) 

(6) 

so that determination of these fluxes involves evaluation of the reflection and trans­
mission functions 8(11-, 11-') and T(I1-, 11-'). These also depend implicitly on the parameters 
c and T. 

The X- and Y-functions now appear, following Auerbach (1961), as 

and 

whilst, in turn, 

and 

Y(I1-) = exp( -TII1-) + Sol (211-T1 T(I1-, 11-') dl1-' , 

8(11-,11-') = CI1-I1-',(X(I1-) X(I1-') - Y(I1-) Y(I1-'») 
11-+11-

T(I1-,I1-') = CI1-I1-',(Y(I1-)X(I1-')-X(I1-) Y(I1-'»). 
11--11-

(7) 

(8) 

(9) 

(10) 

Elimination of 8 and T from equations (7)-(10) leads to the defining equations 
(1) and (2). 

III. VARIATIONAL FORMULA 

Integrals of the angular fluxes emerging from the slab have the general form 

I = f 8*(11-) cP(O, -11-) dl1- + f T*(I1-) cP(T, 11-) dl1-. (ll) 
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If in partioular T*(p.) and S*(p.) are ohosen as zero and p.a(P.-P.1) then 

while interohanging these forms for S* and T* gives 

To oaloulate I we use instead the variational expression 

.!R = 501 
S*(I-') ",(0, -I-') dl-' + 501 

T*(I-') "'(T,I-') dl-' 

- 501 
cP*(O, I-'H"'(O, 1-') -8(I-'-p.o)} dp. - 501 

cP*(T, -I-') "'(T, -p.) dl-' +.!Ro, 

(12) 
with 

.!R is clearly identioal with I if the trial function "'(:1;,1-') satisfies equations (3) and 
(4) for cP(:I;, p.), and it is easy to show that .!R has zero variation for first-order errors 
in "'(:1;,1-') about the oorrect value when the funotion cP*(:I;,p.) satisfies the adjoint 
transport equation 

BcP* f1 
cP*(:I;,p.) -p.ax = tc -1 cP*(X,I-") dp.', (13) 

with boundary oonditions 

cP*(O, -p.) = p.-lS*(I-') and (14) 

In addition .!R has zero variation for first-order errors in the adjoint function 
cP*(:I;, p.). 

The standard procedure for use of the variational expression (12) is to ohoose 
for "'(:1;, p.) and cP*(:I;,I-') parameter-dependent trial funotions and then to select the 
parameters in suoh a way that the expression (12) is stationary with respeot to 
variation of the parameters. This teohnique oan be applied if numerioal values are 
sought either for the emergent distributions (5) and (6) or for the refleotion and 
transmission funotions Sand T. In the present work, however, we are interested in 
obtaining-semi-analytio forms for the X- and Y-functions and use of the standard 
method leads to forms for Sand T that are not amenable to the integrations shown 
in equations (7) and (8). 

We therefore follow an alternative oourse by simply seleoting for the trial 
funotions expressions that are reasonable approximations to the true neutron flux 
and adjoint funotion, substituting these into equation (12), and aocepting the results 
as approximations to the integral (11). 
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We are seeking approximations that are valid for slabs of large thickness T 

and for such systems numerical studies show that the angular flux 1>(x, IL) for the finite 
slab is well approximated (except near x = T) by the angular flux appropriate to the 
semi-infinite system 0 ~ x < 00. Physically the flux near the source plane x = 0 
is not strongly affected by the presence or absence of material beyond x = T> O. 
Since the equivalent result is true for solutions of the adjoint equation an appropriate 
set of trial functions will be the flux and adjoint functions for correctly chosen 
semi-infinite medium problems and these we now describe. 

IV. SOLUTIONS FOR SEMI-INFINITE MEDIA 

If .p(x, IL) satisfies the transport equation (3) in 0 ~ x ~ 00 with boundary 
condition 

(15) 

then 

(16) 

where the semi-infinite medium reflection function 8 00 is given III terms of the 
H-function by 

For large x the angular flux .p(x, IL) settles down into an asymptotic distribution which 
(provided c < 1) decays exponentially as exp( -Kx) where the inverse diffusion 
length K is the solution of 

K = !clog{(I+K)/(I-K)} , 

In terms of K the angular flux for large x is given by Auerbach (1961) as 

(17) 
where 

Near the boundary x = 0 other terms have to be added to (17) but these 
transients die away rapidly as x increases. 

Since this trial function .p(x, IL) is chosen to satisfy the transport equation (3) 
in 0 ~ x < 00 and thus throughout the slab 0 ~ x ~ T (albeit with an incorrect 
boundary value at x = T), the term 20 in the variational expression (12) vanishes 
identically. In calculating 2 we need only evaluate the trial function and the 
adjoint trial function 1>*(x, IL) at the boundaries x = 0 and x = T. 

It is convenient at this stage to investigate the function 1>*(x, IL) which satisfies 
the adjoint transport equation (13) in the semi-infinite region 0 ~ x < 00 with a 
boundary condition 

(18) 
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On comparison of the regular equation (3) with the adjoint equation (13) and 
of the boundary condition (15) with the adjoint boundary condition (18) it is clear 
that ¢.t(x, p,) depends on p, in the same way that ¢sex, p,) depends on -p,o In particular 
we have at x = 0 

while 

then 

0<p,<1, 

¢t(x, p,) ~ !c OC(P,l) exp( -Kx)/(I+Kp,) 

V. APPROXIMATION FOR X(p,) 

If in equation (ll) we set 

T*(p,) = 0 and 

I = p,l cfo(O, - p,l) . 

for large x. 

(J 9) 

(20) 

To estimate I we evaluate .P from equation (12) using the trial "function 
¢sex, p,) studied in Section IV. If we substitute the present forms for 8*(p,) and T*(p,) 
into (12), use equations (15) and (16) for ¢S(O, ±p,), and note that .Po is zero for our 
trial function ¢sex, p,) then equation (12) becomes 

.P = !c p,o+P,l H(p,o)H(p,l) - (1 p,cfo*(r, -p,) ¢S(r, -p,) dp,. (21) 
p,o p,1 Jo 

The expression .P will then approximate I if cfo*(x, p,) is chosen as an approximate 
solution of the adjoint problem defined by equation (13) with boundary conditions 
(14), which here 'become 

cfo*(O, -p,) = 8(p,-P,1)' cfo*(r, p,) = O. 

We saw in Section IV that the function cfot(x, p,) with properties given in equations 
(18)-(20) will serve as a suitable approximation. 

If the further assumption is now made that the asymptotic formulae (17) 
and (20) provide at x = r sufficiently accurate expressions for the trial functions 
¢S and cfo*, then equation (21) becomes 

P,l cfo(O, -P,l) ~ lC{P,OP,l/(P,O+P,l)}H(p,o) H(P,l) 

+ (c2/8K2)oc(p,0) OC(P,l) exp( -2K r) log(I-K2) . (22) 

Equations (5) and (7) imply 

X(p,) = 1+ 11 (p,/p,o)cfo(O, -p,) dp,o 
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and use of equation (22) gives 

X(I1,) ~ 1+tCI-'H(I-') (1 H+(I-'O) dl-'o Jo I-' /-'0 

+ (c2j8K2)",(I-') exp( -2K'T) log(1-K2) (1",(/-'0) d/-'O. Jo 1-'0 

From the integral equation for the H-function 

il 
H(I-'o) 

H(I-') = 1+tcI-'H(I-') -+ dl-'o, 
o I-' 1-'0 

and the normalization integral 

(1 H(I-') dl-' = ~ 
Jo 1-KI-' c' 

it follows that 

(23) 

(24) 

X( ) ~ H( )+!clog(1-K2) H(I-') ( eXP(-KT»)2 (25) 
I-' I-' 1-KI-' H(K-l){cj(1-K2)-1} 

then 

As T tends to infinity this expression tends to H(I-'), as it should. 

VI. ApPROXIMATION FOR Y(I-') 

If in equation (ll) we set 

S*(I-') = 0 and 

which also will be estimated by the variational expression (12). 
As a trial function if1 the solution for a semi-infinite medium is again used, when 

it follows that 

1-'1 ~(T, 1-'1) ~ 1-'1 if1(T, 1-'1,> - f I-'~*(T, -1-') if1(T, -1-') dl-', (26) 

where ~*('T, 1-') has now to satisfy the adjoint transport equation with boundary 
conditions 

~*(O, -1-') = 0, 
} (27) 

0<1-' < 1, 
and 

This particular adjoint problem is similar to the adjoint problem posed in the 
preceding section, but reflected completely about the plane x = tor. For the present 
problem we therefore use the mirror image of the approximate solution 1>t(x, 1-'), 
i.e. we take 

1>*(x,l-') = 1>i(T-X, -1-'). 
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In particular on the boundary x = T this gives 

If at the same time we approximate IjJ(T, /L) by the asymptotic solution (17) 
then equation (16) reduces to 

The integral term is dealt with by a partial fraction expansion and use of the relations 
(23) and (24). Some elementary manipulations lead finally to 

From equations (8) and (10) it then follows that 

(28) 

which tends to zero as T tends to infinity. 
It is interesting to note that equation (28) can be obtained by an independent 

argument if the thickness T is large enough to permit the asymptotic distribution 
(17) being set up at the centre x = iT. The procedure is to solve the Milne problem 
for the region - 00 < x ::::;; T and to match the corresponding asymptotic distribution 
at x = iT to the distribution (17). It is found that the emergent distribution at 
x = T is identical with that found by the variational treatment. 

VII. CONSERVATIVE CASE 

If there is no absorption and c becomes unity, the solutions (25) and (28) become 
indeterminate, since K becomes zero. Two procedures can then be followed. We can 
use as trial functions the semi·infinite medium solutions appropriate to the conservative 
case or alternatively the solutions (25) and (28) can be evaluated by a limiting pro· 
cedure as K tends to zero. Either procedure leads to the expressions 

X(/L) = (1-!/L)H(/L) (29) 

and 

Y(/L) = 0, (30) 

which are certainly unsatisfactory as they are independent of thickness. This poor 
result is not, however, surprising since the alternative procedure described at the 
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TABLE 1 

COMPARISON OF X(fL) AND Y(fL) VALUES FROM EQUATIONS (25) AND (28) WITH ACCURATE VALUES 

FROM MAYERS (1962) 

X(fL) Y(fL) 

fL Exact Eqn (25) Error (%) Exact Eqn (28) Error (%) 

c = 0 -80, T = 2 -5 

0-0 1-0 1-0 0-0 0-0 
0-1 1-1384 1-1384 0 0-0088 0-0083 -6-0 
0-2 1-2276 1-2276 0 0-0208 0-0195 -6-5 
0-3 1-2988 1-2988 0 0-0365 0-0337 -8-3 
0-4 1-3583 1-3583 0 0-0578 0-0517 -10-6 
0-5 1-4092 1-4092 0 0-0861 0-0745 -13-4 
0-6 1-4532 1-4533 0 0-1213 0-1038 -14-4 
0-7 1-4917 1-4918 0 0-1622 0-1420 -12-5 
0-8 1-5256 1-5253 0 0-2071 0-1936 -6-5 
0-9 1-5556 1-5540 -0-1 0-2544 0-2663 +4-7 
1-0 1-5824 1-5778 -0-3 0-3030 0-3754 +23-9 

c = 0-90, T = 2-0 

0-0 1-0 1-0 0-0 0-0 
0-1 1-1689 1-1682 -0-1 0-0211 0-0198 -6-2 
0-2 1-2839 1-2822 -0-1 0-0496 0-0463 -6-7 
0-3 1-3783 1-3756 -0-2 0-0868 0-0794 -8-5 
0-4 1-4585 1-4546 -0-3 0-1352 0-1200 -11-2 
0-5 1-5274 1-5224 -0-3 0-1941 0-1691 -12-9 
0-6 1-5872 1-5805 -0-4 0-2606 0-2283 -12-4 
0-7 1-6392 1-6297 -0-6 0-3312 0-2998 -9-5 
0-8 1-6848 1-6705 -0-8 0-4031 0-3865 -4-1 
0-9 1-7249 1-7028 -1-3 0-4743 0-4927 +3-9 
1-0 1-7605 1-7459 -0-8 0-5437 0-6248 +14-9 

c = 0-90, T = 5-0 

0-0 1-0 1-0 0-0 0-0 0-0 0-0 
0-1 1-1720 1-1720 0-0 0-0041 0-0041 -0-0 
0-2 1- 2911 1-2912 +0-0 0-0096 0-0096 -0-0 
0-3 1-3908 1-3907 -0-0 0-0165 0-0164 -0-6 
0-4 1-4776 1- 4775 -0-0 0-0250 0-0248 -0-8 
0-5 1-5548 1-5546 -0-0 0-0352 0-0350 -0-6 
0-6 1-6242 1-6239 -0-0 0-0477 0-0472 -1-0 
0-7 1- 6871 1-6868 -0-0 0-0628 0-0620 -1-3 
0-8 1-7446 1-7441 -0-0 0-0807 0-0799 -1-0 
0-9 1- 7973 1-7966 -0-0 0-1016 0-1019 +0-3 
1-0 1-8458 1-8448 -0-1 0-1254 0-1292 +3-0 

c = 0 -95, T = 2 -0 

0·0 1·0 1·0 0·0 0-0 
0·1 1·1879 1·849 -0-3 0-0276 0-0250 -9-4 
0-2 1-3203 1-3132 -0-5 0-0647 0-0583 -9-7 
0-3 1-4312 1-4191 -0-8 0-1121 0-0996 -11-2 
0-4 1-5268 1-5091 -1-2 0-1718 0-1492 -13-2 
0-5 1-6098 1-5856 -1-5 0-2423 0-2078 -14-2 
0·6 1-6822 1-6502 -1-9 0-3201 0-2761 -13-7 
0-7 1-7457 1-7035 -2-4 0-4016 0-3554 -11-5 
0-8 1-8015 1-7459 -3-1 0-4838 0-4469 -7-6 
0-9 1-8508 1-7774 -4-0 0-5646 0-5524 -2-2 
1-0 1-8946 1-7974 -5-1 0-6428 0-6742 +4-9 
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TABLE 1 (Continued) 

X(fL} Y(fL} 

fL Exact Eqn (25) Error (%) Exact Eqn (28) Error (%) 

c = 0-95, T = 4-0 

0-0 1-0 1-0 0-0 0-0 
0-1 1-1937 1-1930 -0-1 0-01l8 0-01l7 -0-8 
0-2 1-3338 1-3320 -0-1 0-0276 0-0273 -1-1 
0-3 1-4545 1-4514 -0-2 0-0472 0-0466 -1-3 
0-4 1-5621 1-5574 -0-3 0-0708 0-0699 -1-3 
0-5 1-6594 1-6529 -0-4 0-0989 0-0973 -1-6 
0-6 1-7481 1-7396 -0-5 0-1318 0-1293 -1-9 
0-7 1-8296 1-8186 -0-6 0-1697 0-1664 -1-9 
0-8 1-9046 1-8907 -0-7 0-2123 0-2092 -1-5 
0-9 1-9737 1-9563 -0-9 0-2589 0-2586 -0-1 
1-0 2-0376 2-0158 -1-1 0-3090 0-3156 +2-1 

c = 0-95, T = 10-0 

0-0 1-0 1-0 0-0 0-0 
0-1 1-1952 1-1952 0-0013 0-0012 
0-2 1-3373 1- 3373 0-0028 0-0028 
0-3 1-4603 1-4604 0-0047 0-0048 +2-0* 
0-4 1-5708 1-5708 0-0071 0-0072 +1-4* 
0-5 1-6716 1- 6716 0-0099 0-0100 +1-1* 
0-6 1-7644 1-7644 0-0132 0-0133 +0-8* 
0-7 1-8506 1-8506 0-0169 0-0171 +1-2* 
0-8 1-9309 1-9309 0-0213 0-0215 +0-9* 
0-9 2-0061 2-0060 0-0263 0-0265 +0-8* 
1-0 2-0766 2-0765 0-0321 0-0323 +0-6* 

* Although percentage errors are quoted in this example, the difference between the 
approximation (28) and the "exact" values of Mayers (1962) are all within the quoted errors in 
Mayers's compilation_ 

conclusion of the preceding section cannot be followed for the conservative case_ 
The asymptotic distribution set up far from the- source plane will-be 

tjJ(x, fL) = t.j3 fLoH(fLo) , x~O, 

which is independent of position_ On the other hand, the asymptotic distribution 
for the Milne problem (- 00 < x < T) has the form 

tjJ(X,fL) = A(O-7l04 - - - +fL+T-X) , 

and the two distributions cannot be matched_ 

VIII. COMPARISON WITH TABULATED VALUES 

To test the accuracy of the approximations embodied in equations (25) and (28) 
their values have been compared with those tabulated by Mayers (1962) for: 

c = 0-80 
T = 2-5 

0-90 
2-0,5-0 

0-95 
2-0,4-0, 10-0 
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The results are displayed in Table 1, which also gives the percentage error in the 
approximations. Provided T ;;? 5·0 the agreement is satisfactory and the a.pproxi· 
mations may be used with some confidence. For T < 5·0 the approximations would 
be of value as initial guesses in an iterative scheme for calculating X(/L) and Y(/L). 
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