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Summary 

We oonsider the energy loss by a fast test ion in a plasma and tabulate 
numerioal results for the oorreotions to the usual dominant "InA" term in the loss 
rate (for all values of the ratio between test ion and plasma eleotron thermal speeds). 
As a preliminary oonsideration, we present a derivation of the Fokker-Planok 
equation whioh treats both olose collisions and oooperative plasma effeots fully; the 
resulting equation is not new but the derivation is novel and has simplioities whioh 
facilitate oaloulation. 

This work is motivated by some reoent experiments (whioh are disoussed), but 
the results are tabulated in suoh a form as to be generally useful. 

I. INTRonUCTION 

By now there exists a considerable body of work pertaining to the calculation 
of relaxation rates and transport coefficients in a plasma; most of this work is confined 
to calculation of the so-called "dominant" terms, i.e. the terms that are proportional 
to the ubiquitous "InA" of plasma physics. 

In particular, the problem of the rate of energy loss by a fast test ion in a plasma 
has received considerable theoretical attention (see e.g. reviews by Montgomery 
and Tidman 1964; Shkarofsky, Johnston, and Bachynski 1966). It is only quite 
recently that experiments have been made which are accurate enough to measure 
corrections to the dominant term (Halverson 1968; Ormrod 1968), and it behoves us 
to provide fully accurate theoretical expressions for comparison with these experi
ments. The new work presented here is motivated towards this end, but the numerical 
results are tabulated in such a way as to be generally useful. 

In simple treatments of the problem, the Coulomb collision integrals diverge 
logarithmically both at small distances (due to an inadequate treatment of the 
dynamics of close encounters) and at large distances (due to neglect of cooperative 
screening and plasma wave effects). These divergences are overcome by introducing 
phenomenological cutoffs at the plasma Debye length In for large distances and at 
the classical distance of closest approach bo = Ze2JKT for small distances. One is 
thus led in such simple theories to the omnipresent factor InA "" In(lnJbo). 

In more rigorous treatments the dynamics of close collisions are considered 
exactly, and also the cooperative effects are treated fully (via the plasma kinetic 
equations or otherwise), so that instead of empirical cutoffs at In and bo one gets a 
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formalism with convergent integrals, the precise values of which depend upon the 
ratio between test ion speed V and the plasma electron thermal speed (2KTjm)t, 
that is, upon the parameter x 

(1) 

Although these accurate expressions exist in a formal sense, they have been 
reduced to usable form essentially only in the limit x ~ 1. Halverson's (1968) experi. 
ment has x = 1·3. 

The problem is treated here in two parts: 

(1) Firstly, in Section II we present a derivation of the Fokker-Planck equation 
101' a test particle distribution function in a plasma; this derivation is accurate and 
free of singularities. The formal expression so obtained is not new but the outlined 
derivation is somewhat simpler and more physically transparent than the seminal 
derivations. 

(2) Secondly, in Section III we reduce the formal expressions to usable form for 
the case of a fast test ion which is losing energy predominantly to plasma electrons. 

The final results, representing the corrected version of the In A of simple theories, 
lI.1"e of necessity presented in numerical form. These results are summarized, discussed, 
and compared with experiment in Section IV. The discussion includes a careful 
account of the approximations involved; it is seen that the present results are essen· 
tially exact unless x is quite small. 

The Appendix contains analytic expressions for the energy loss rate in the 
limiting cases when x ~ 1 and when x < 1. 

It is to be appreciated that similarly accurate expressions, going beyond the 
dominant In A term of simple theories, pertain to other transport and relaxation 
problems in a plasma. The calculation here is a prototype for such calculations, and 
the appropriate detailed numerical coefficients in other problems are often simple 
relatives of those tabulated here (Shkarofsky, Johnston, and Bachynski 1966). 

II. FOKKER-PLANCK EQUATION FOR A TEST PARTICLE IN A PLASMA 

For the calculation of relaxation rates and transport coefficients in a plasma 
one can in general begin from a Fokker-Planck equation. In particular, for the 
case of a test particle distribution function ft, the Fokker-Planck equation takes 
the form 

(2) 

The subscript t refers to the test particles, and the subscript j to the various species 
present in the background plasma. The vector F and the tensor T are the generalized 
"friction" and "diffusion" coefficients, and depend in a complicated way on the 
plasma properties. We assume that the test particles are few compared to the plasma 
particles (nt ~ nil, so that their presence does not distort the equilibrium Maxwellian 
distribution functions !i of the background plasma (for a more complete discussion, 
see Montgomery and Tidman 1964, Ch. 2; or Shkarofsky, Johnston, and Bachynski 
1966, Ch. 7). 
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In what follows we shall always assume that In ~ bo, and the neglect of terms 
of relative order (bo/ln)2 shall be deemed "exact". 

Now the simplest version of the Fokker-Planck equation (2) can be derived 
directly from the Boltzmann equation (e.g. Montgomery and Tidman 1964), or 
alternatively from first principles (Spitzer and Harm 1953; Rosenbluth, MacDonald, 
and Judd 1957; Kaufman 1960) by using the ordinary Coulomb cross section for 
the interaction between test and plasma particles and by treating all the Coulomb 
collisions as distant ones (Le. small angles of scattering). The consequent friction 
and dispersion coefficients can then be written 

(3a) 

T j ( Vt) = 4nj e! e~ fdk : k fdV !j( v) 8(k. g) , 
mt k 

(3b) 

where g is the relative velocity Vt-V. The form of equations (3) written here is not 
the usual one for this simplest approximation; we have used the above form so that 
the relationship between simple and complete theories (eventually equations (8) 
below) will be transparent. Equation (3b) is obtained from the form which is more 
familiar in this simple case by introducing the wave number k such that k. g = kg sin( t8), 
where 8 is the scattering angle; the three-dimensional integral over k along with the 
8-function then reduces back to the usual angle integral over the Coulomb differential 
cross section. (This transformation is discussed in Chapman and Cowling (1960, 
p. 61).) The integral over I k I diverges logarithmically both forlarge k (close collisions), 
due to the assumption that all collisions have a small scattering angle, and for small 
k (distant collisions) because the cooperative screening has been omitted entirely. 
As mentioned in the Introduction, these logarithmic divergences are overcome by 
the introduction of empirical cutoffs at around the classical distance of closest approach 
bo and at the Debye length In, leading to the ubiquitous InA '" In(ln/bo) of simple 
theories. 

If the derivation of the Fokker-Planck coefficients proceeds by use of the 
ordinary unscreened Coulomb cross section for interactions between test and plasma 
particles, but treats the dynamics of binary Coulomb collisions exactly (Le. scattering 
angles are not necessarily assumed all to be small), then one arrives at 

Tj(Vt) = 4nje!e~ Idk :k IdV!j{V) 8(k.g- ejet k2) , 
~ k ~tg 

(4) 

with the relation (3a) still connecting F and T. There is now no divergence for large 
k, because close collisions have been handled properly; a phenomenological cutOff 
is still needed for the singularity at small k (large distances). The coefficients (4) 
reduce to those obtained by Spitzer (1940) and Chandrasekhar (1941) (for gravi
tationally interacting particles) and by Frankel (1965), who has discussed some of 
their consequences for problems in plasma physics. 

Conversely, if one treats the cooperative screening and plasma wave effects 
accurately, one gets expressions for F and T in which the integrals have no spurious 
singularities at small wave numbers. Treatments of the plasma correlations, leading 
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to such a Fokker-Planck equation, have been given in various ways by Thompson 
and Hubbard (1960), Hubbard (1961a, 1961b), and Tidman, Guernsey, and 
Montgomery (1964), following the Balescu (1960) and Lenard (1960) approach to the 
equations of plasma theory, and by Kihara and Aono (1963) and Aono (1968a). All 
these treatments come to the result 

4nje;e~ f dk kk f Tj(vt) = 2 4 2 dv fj(V) o(k.g), 
mt k ID+I 

(5b) 

or to some equivalent form, related by identities on D+. The function D+ is the plasma 
dispersion function, which in this instance is 

D+(k,k.Vt) = 1- ~ w; f du 2 f dvfJ(v)o(u-k.vjk), 
j c (ku+k. Vt) 

(6) 

where Wj is the plasma frequency for the jth species, w; = 47Tnj e; jmj. This D+ factor 
in equations (5) plays the role of a plasma dielectric constant and provides the 
necessary dynamical shielding which need no longer be introduced via a Debye 
cutoff. However, the expressions (5) do need an empirical cutoff for large k (close 
collisions) because the Coulomb collisions have (as in equations (3)) been assumed to 
be distant ones. 

Alternatively the expressions (5) can be derived directly from the Boltzmann 
collision integral (as in the derivation of equations (3) above) by taking the interaotion 
between the test particle and the plasma particles to be the "dressed" interaction, as 
calculated by Rostoker (1960). In this event the Fourier transform of the Coulomb 
potential (k-2 in equations (3)) is replaced by 

l/k2 ~ l/k2 ID+ I. (7) 

Using this "dressed" potential, but otherwise treating the test particle trajectories as 
straight lines (small angle scattering), the expressions (5) are immediately obtained 
directly from the Boltzmann equation, as (3) were previously obtained. 

It is now clear what the final and accurate step is to be. We use the "dressed" 
potential (7) and treat the dynamics of the test particle trajectories properly. Thus 
just as one went from (3) to (4) for the "undressed" simple Coulomb potential, now 
one proceeds from equations (5) to arrive at 

F (Vt) = 2~e;e~ (-.!.. f dk kk .~+ ~~. f dk kk ) fdV fj(v) O(k.g- ej et k2.) , 
j mt mj k41D+120Vt mtOvt k41D+j2 !Ljtg 

(8a) 

Tj(Vt) = 4nje!e~ f ~k k\ fdV fj(v) o(k.g- ej et k2). 
mt k I D+ I !Ljtg 

(8b) 

These equations represent a synthesis of (4) and (5); both large and small wave 
numbers are treated accurately, and no singularities arise. 
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The approximation scheme outlined in the preceding two paragraphs is 
presented in a more general context, and in more detail, by Frieman and Book (1963). 
Indeed equations (8) can alternatively be derived, after some manipulation, from thp, 
general expression given by Frieman and Book for the two-particle correlation 
function in a plasma. 

Other authors have obtained expressions for the friction and diffusion 
coefficients which can be brought into forms identical with (8). Thus Guernsey (1964) 
has demonstrated that, if the Balescu-Lenard theory is obtained as the limit of a 
uniformly valid theory, then this can be shown to imply equations (8). Similarly 
Perkins (1965), Itikawa and Aono (1966), and Aono (1968a, 1968b) have devised 
formalisms which yield uniformly valid approximation schemes, leading to results 
equivalent to (8). 

Thus the result (8) is by no means a new one. However, the presentation here, 
where the expressions are derived via the corrections of equations (4), (5), and (6) 
from the simple equations (3), is more direct than the considerably more formal 
presentations of most of the above authors. 

Evaluation of k J nteyration 

As a lead-in to the explicit calculation in Section III, and also to make concrete 
the above remarks about singularities in the k integrations, we conclude this section 
with an evaluation of the k integration in the diffusion coefficient T in equations (3), 
(4), (5), and (8). 

To illustrate the procedure, consider the contraction of the tensor T, disregarding 
the multiplicative combination of physical constants, so that we have from (8b) the 
integral 

J = fdVf(V) f 2 dk 2S(k.g- Ze2k2). 
k ID+ I fLY 

(9) 

We now focus on the k integration and define intermediate wave numbers ki 
and k2 such that 

(10) 

where kn is the inverse of the Debye length (kn = l:i)I) and ko is the inverse of bo 
(ko = bol ). Correspondingly the integration over the modulus of k is divided into 
three regions: (i) 00 > k > kl, (ii) ki > k > k2, and (iii) k2 > k > o. 

Now in region (i), k> ki ~ kn so that shielding is unimportant and we have 
that D+ --+ 1 + (!)(kn/kl)2. The k integration is then readily accomplished to yield 

J(i) = 2rr f dv f~)ln(Z:;:){I+lD(~~r}· (11) 

Conversely, in region (iii), k < k2 ~ ko so that only small-angle scattering is 
relevant and the S-function consequently simplifies to the form of (5). The integral 
over the modulus of k remains complicated and we get 

(12) 
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In the intermediate region (ii), both simplifications are allowable and we arrive at 

I(ii) = 21Tln(:~) f dv f~) {1+@(~~r. (:~r}· (13) 

Reviewing these expressions we see that the integral I obtained from the final 
theory (8) comprises the sum I(i)+I(ii)+I(iii). This integral is free of singularities 
and (provided we can assume ko ~ kn, as is usually so in practice) is independent of 
the choice of separation parameters ki and k2. On the other hand, the simple theory, 
embodied in equations (3), corresponds to taking region (ii) alone; the resulting 
expression (13) contains empirical cutoffs ki and k2 at large and small wave numbers 
(and simple theories use the identifications ki '" ko, k2 '" kn). The refinement for 
close collisions, leading to equation (4), corresponds to taking regions (i)+(ii), with 
consequently one empirical cutoff at k2• Inclusion of cooperative effects (only), 
leading to equations (5), corresponds to taking regions (ii)+(iii), with again one 
arbitrary cutoff, this time at ki . 

III. ENERGY Loss OF A FAST TEST ION 

We apply the above methods to calculate the rate of energy loss by an energetic 
test ion in a plasma. By "energetic" we mean that the test particle energy is 
substantially in excess of that of the average plasma particle of any species. Under 
this assumption, the test particle distribution function may be accurately approxi
mated by a S-function (see May 1964 for a detailed discussion of this point) 

(14) 

We notice that if the test ion is "energetic" in this sense then its speed is greater than 
that of the plasma ions; however, nothing has been said about the ratio between the 
test ion speed V and the plasma electron thermal speed (2KT/m)1; this ratio x 
(equation (1» remains a parameter in our problem (m and T are of course the plasma 
electron mass and temperature). Previous explicit results are confined to x ~ 1, 
and some rough results for x < 1. 

We further restrict our attention to the case when the test ion is losing energy 
predominantly to plasma electrons. As has been carefully discussed (e.g. Butler and 
Buckingham 1962), this will be the case provided 

x > (m/Mt)i(f:rri Z~ nt/n)i (15a) 

or, approximately, 

(15b) 

where Mi, Zte, and ni are the mass, charge, and number density of the background 
plasma ions. Thus we notice that once x is in th,e general vicinity of unity, or greater, 
then indeed the test particle energy loss is to plasma electrons. There now ensues 
the excellent approximation of neglecting terms of relative order m/mt, which simplifies 
things somewhat. 

Using equation (14) we find from equation (2) that the rate of energy loss of a 
fast test ion (with energy E, speed V) which is losing energy to plasma electrons is 

dE/dt = mt(V.F(V) +IT(V)) , (16) 

j 
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where T is the contraction of the tensor T. Substituting from the accurate equations 
(8) for the friction and diffusion coefficients F and T, we obtain after neglecting 
terms of relative order m/mt 

dE = 2(Ze2)2 ffJdVdkdw o(w-k. V) O(k. _ Zik2)k. Vk. 8f(v) • (17) 
dt m k4 ID+(k,w) 12 g mg 8v 

Here D+ is defined by equation (6), g = V-v, andf(v) is the distribution function 
for the background plasma electrons, which we have assumed to be in equilibrium, 
so that 

f( v) = n(m/27TKT)3/2 exp( -mv2/2KT). (18) 

~he dummy variable w has been introduced in (17) for subsequent convenience. 
In reducing this expression (17) to manageable form, it is convenient again to 

introduce the wave numbers kl and k2 such that 

ko ~ kl ~ k2 ~ kn 

and to consider the three regions (i), (ii), and (iii) exactly as was done at the end of 
Section II. 

Region (ii), kl > k > k2 

Here, as discussed above, we can put ID+ 1-+ 1 and o(k.g -Ze2k2/mg) -+ o(k.g), 
provided we neglect terms of relative order (kn/k2)2 and (kl/ko)2. 

One way of simplifying equation (17) in this region (a way that is also suitable 
for region (iii» is to first differentiate f (v) and perform the integration over v to get 

dE(ii) = _ 4n(Zi)2 1 I dk IdS i exp( _S2) o(~ _ k. V) . (19) 
dt m V 7Tt k3 x k V 

k,>k>ka 

Here we have used a change of variable to s = (w/kV)x; x is the parameter of the 
problem as defined above. This expression now comes trivially to 

dE( .. ) 47Tn(Ze2)2l (kl) 41x d 2 ( 2) - 11 = - n - - s s exp -s . 
dt mV k2 7Tt 0 

(20) 

At this point it is convenient to define the function If'(x) as 

If'(x) == 47T-t LX s2exp(_s2) ds = erf(x)-27T-t xexp(-x2). (21) 

Alternatively, one may simplify equation (17) in the region (ii) by first 
performing the integrations over wand k (this way is the one that is suitable also for 
region (i». One then gets, after a partial integration with respect to v, 

dE(ii) = _ 2(Ze2)2 IdVf(V) v~: I dk kko(k.g) 
dt m 8v k4 

k,>k>ka 

(22) 

= + 2(zi)2 IdVf(V) v~: {~1n(kl)}(l_gg) 
m 8g g k2 l (23) 
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= _ 4rr(Ze2)2ln(kl) fdV V.g f(v). 
m k2 g3 

(24) 

The integral over v now gives exactly the expression (20) above-as it should. 
This result (20) or (24) is of course the familiar one of simple theories, with 

phenomenological cutoffs at k2 ,....., li} and kl ,....., bOlo A direct and lucid derivation of 
this result, totally by-passing all question of the test particle distribution function, is 
due to Butler and Buckingham (1962); although direct, this analysis tends to obscure 
the implicit assumption (14) (see May 1964). 

Region (iii), k2 > k > 0 

In this region, as discussed at the end of Section II, we may take 

o(k.g-Ze2k2/mg) -+ o(k.g) 

in (17), thus neglecting terms of relative order (k2/ko)2. However, the full complication 
of D+(k, w) must be kept. Then, instead of equation (19) above, we have 

dE (iii) = _ 4n(Ze2)2!. f dk fds i exp( -i) (~_ k. V) . (25) 
dt mV n*k>kk3 ID+(k,s) 12 0 x kV 

2 

At this point we pause to observe that the plasma dispersion function D+(k, s) 
can be written (see e.g. Kihara and Aono 1963; Abramowitz and Stegun 1964, 
formulae 7.1.3 and 7.1.4) 

where X and Yare the functions* 

X(s) = 1-2sexp(-i) J: expt2 dt, 

Y(s) = ntsexp(-i). 

Then, performing the integration over the angles of k, we have 

dEC.) 4nn(Ze2)24 rx 2 ( 2) d rk2 k3 dk 
(ft"lll = - mV ndo s exp -s s Jo {k2+kbX(S)}2+{k~Y(s)}2' 

which leads to 

(26) 

(27a) 

(27b) 

(28) 

dEd (iii) = _ 4?Tn(~2)2:! rx sds[Y(s){ln(k2/kn)-tln(X2+y2)}-!X(s)tan-l(y/X)]. 
t m n Jo 

(29) 

Here again terms of relative order (kn/k2)2 have been ignored. 
This result, which gives an accurate account of cooperative screening and 

plasma wave effects, is implicit in, or related to,t the work of Hubbard (1961a, 1961b), 

* Note that the identity kbsexp( -S2) 1 D+ 1-2 ~ -7T-1 k 2 Im(I/D+) serves to connect 
apparently differing presentations of, for example, equations (17) or (8). 

t A detailed exposition of the reduction of a closely related integral is given in Shkarofsky 
Johnston, and Bachynski (1966, pp. 264-7), where their term Xl corresponds to our -X. 

I 
I 
I 
I 
! 

f 
,~ 
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Kihara and Aono (1963), Tidman, Guernsey, and Montgomery (1964), and Aono 
(1968a). 

Finally we rewrite equation (29) as 

~(iii) = _ 4nn~~2)2 IJf(X){ln(k2/kD)+'h(x)} , (30) 

where lJf(x) is the standard energy loss function defined in equation (21) and Lh(x) is 

Lh(x) = _7T-1{IJf(x)}-1 LX sds{Yln(X2+y2)+2Xtan-1(y/X)}. (31) 

The inverse tangent is to be evaluated in the range O-rr. 
The function .11(X) is tabulated as a function of x in the second column of Table 1. 

Previous calculations of this correction term are confined to the limit x }> 1. 

TABLE 1 

FUNCTION ,1(x) AND ITS COMPONENTS ,11 AND ,12 

These functions represent the corrections to the InA term of simple theories (see equation (37)). 
x is the (dimensionless) test ion speed 

x ,1r(x) ,12(x) ,1(x) x ,1r(x) ,12(x) ,1 (x) 

0·1 -0,49 -2·27 -2·76 2·1 0·84 -0·62 0·22 
0·2 -0·48 -2·26 -2·74 2·2 0·91 -0,50 0·41 
0·3 -0,46 -2·23 -2·69 2·3 0·98 -0,38 0·60 
0·4 -0·43 -2·20 -2·63 2·4 1·04 -0·27 0·77 
0·5 -0,39 -2·17 -2,56 2·5 1·10 -0,16 0·94 
0·6 -0·34 -2·12 -2·47 2·6 1·16 -0·06 1·10 
0·7 -0·29 -2·06 -2·35 2·7 1·21 +0·04 1·25 
0·8 -0·23 -2·01 -2·24 2·8 1·26 0·13 1·39 
0·9 -0·16 -1·94 -2·10 2·9 1·30 0·22 1·52 
1·0 -0,09 -1·86 -1·95 3·0 1·35 0·30 1·65 

I 

1·1 -0·01 -1·78 -1·78 4·0 1·68 0·98 2·66 
1·2 +0·08 -1·68 -1·61 5·0 1·92 1·46 3·39 
1·3 0·16 -1·58 -1·42 6·0 2·12 1·85 3·96 
1·4 0·25 -1·47 -1·22 7·0 2·28 2·17 4·44 
1·5 0·34 -1·36 -1·02 8·0 2·41 2·44 4·86 
1·6 0·43 -1·24 -0·81 9·0 2·53 2·68 5·22 
1·7 0·52 -1·12 -0·60 10·0 2·64 2·90 5·54 
1·8 0·61 -1·00 -0·39 
1·9 0·69 -0,87 -0·18 x~l lnx +(0'34) 2Inx-(1·69) 3lnx -(1'35( 
2·0 0·77 -0·74 +0·03 

Region (i), 00 > k > kl 

In this region, which includes close collisions, we can put D+ -+ 1 if we are 
prepared to neglect terms of relative order (kl/ko)2. Then, following the procedure 
which led to equation (24), we get 

dE(i) = 2(Ze2
)2 J dvf(v) V~: J dk k k 8 ( k. _ Ze2k2) (32) 

dt m 8g k4 g mg 
k>k, 
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= _ 4TT(Ze2)2 JdV f(v) V.g{1n( mg2 ) -I}. 
m g3 Ze2kl 

(33) 

Alternatively (see Montgomery and Tidman 1964, pp. 17-20; or Kihara and Aono 
1963) exactly this result can be derived directly from the Coulomb collision integrals, 
provided the angle integrations are done properly. (In his investigation of the 
corrections to the dominant InA term arising from the dynamics of close collisions, 
Frankel (1965) used a somewhat overly simple approach, to arrive at equation (33) 
with {In( )} instead of {In( ) -I}, thus missing a significant "non-dominant" term.) 

Performing the angle integrals in (33), we arrive at a result which can be written 

(34) 

As before, ko = KT/Ze2 and 4ko is the inverse of the average impact parameter for 
90° Coulomb scattering (Shkarofsky, Johnston, and Bachynski 1966, p. 246), while 
L12(X) is defined as* 

(35a) 

The correction function L12(X) is tabulated in the third column of Table 1. 
Adding together the contributions from regions (i), (ii), and (iii), as expressed 

in equations (34), (20), and (30) respectively, we arrive at the total energy loss rate 

(36) 

The most significant terms which have been neglected in obtaining this result are 
those of order (k1/ko)2 and (kn/k2)2 relative to the non-logarithmic (non-dominant) 
terms L1(x). Suppose we now make the choice kl ("ooJ k2 '" (kokn)l; then the corrections 
to our calculation are uniformly of relative order (kn/ko). Since, by definition, a 
"plasma" has kn/ko ~ 1, neglect of such terms represents an excellent approximation. 

IV. DISCUSSION 

Summarizing the results of Section III, we see that a fully accurate expression 
for the rate of energy loss of a test ion, losing energy predominantly to the background 
plasma electrons, can be written as 

dE 22 

dt = - 4TTn~~) YJ'(x){InA +L1(x)} , (37) 

where YJ'(x) is the familiar energy loss function (equation (21», x is the ratio between 

* G(a:) in equations (35) is in fact ia: times Frankel's (1965) G, which in turn is an 
appropriate specialization of Chandrasekhar's (1941) stellar dynamical function G. 
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test ion speed and plasma electron thermal speed (equation (1)), and {InA +LI(x)} 
replaces the InA term of simple theories; we have used the definition* 

InA = In(4KTlnJZe2) == In(4lnJbo). (38) 

The quantity LI(x), defined as simply 

(39) 

where Ll1(x) and Ll 2(x) are in turn defined by equations (31) and (35) respectively, 
represents the difference between the simple theory, with its empirical cutoffs, and 
the complete theory which gives an accurate account both of the dynamics of binary 
collisions and of collective screening and plasma wave effects. This correction function 
LI(x} is tabulated in the last column of Table 1. 

In this work, summarized in equation (37) and Table 1, our approximations 
have been (1) neglect of terms of relative order mJmt, (2) neglect of terms of relative 
order (boJln}-both of which are excellent approximations-and (3) neglect of energy 
loss to plasma ions, which is a valid assumption (equations (15)) provided x > (mJMi}i. 
Thus in general the above results should pertain accurately once x is roughly in the 
neighbourhood of, or greater than, unity. 

Other assumptions implicit in the work are that classical mechanics (rather 
than quantum mechanics) provides an adequate description of close collisions, and 
that no magnetic fields are present. Quantum mechanics does not dominate close 
encounters until the electron temperature is of the order of 100 e V; at such elevated 
plasma temperatures it is necessary to use a quantum mechanical formulation, such as 
that of Wyld and Pines (1962) or Harris (1969), to describe close collisions (i.e. large 
k, region (i}). This point has received attention from Akhiezer (1961), Frankel (1965), 
and Hines and Budwine (in preparation). Such considerations will of course lead to a 
different correction term, replacing our Ll2(X}, for close collisions (but our Ll1(x), repre
senting distant effects, will still apply). Conversely, if magnetic fields are present they 
will in general affect the screening and plasma wave effects, modifying the dielectric 
constant D+, and thus leading to an altered correction term, replacing our Ll1(x}, for 
distant collisions (Akhiezer 1961; Honda, Aono, and Kihara 1963; May and Cramer 
1969). However, usually the presence of a magnetic field will not affect Ll2(X). For a 
formal discussion including both complications, i.e. quantum mechanics and strong 
magnetic fields, see Walters and Harris (1968). We have displayed Ll1(x) and Ll2(X} 
separately for this reason, namely that one may remain useful even if the other becomes 
irrelevant. 

These results have been presented in such a way as to be generally useful; 
however, the calculations were motivated largely by some recent experiments. In 
particular, Ormrod (1968) has found the relaxation rate for protons in an argon 
plasma to be a half that predicted by the simple theory, and the careful experiments 
of Halverson (1968) yield an energy loss rate for protons in a lithium plasma of about 
60% that calculated on the basis of the simple theory. Halverson's experiment is 
for the relaxation of a 5 ke V proton in a lithium plasma of electron density 

* We follow the definition oflnA used by Halverson (1968) (see also Shkarofsky, Johnston, 
and Bachynski 1966, p. 247). Other authors define InA = In(lD/bo) or, most oommonly, 
InA = In(3lD/bo). 
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n f-..J 4 X 1012 cm-3 and temperature T f-..J 1·5 eV; this corresponds to x = 1·3 
which is well in excess of (m/Mi)1r f-..J 0'04, and also bo/lD f-..J 10-', so that all our 
assumptions are well fulfilled (except the neglect of magnetic fields). 

Halverson expresses his experimental result in the form (cf. equation (37)) 

{InA+LI(x}}exp = 5·8, 

whereas the simple theory, quoted for comparison by Halverson, gives 

lnA=9·7. 

(40) 

(41) 

From Table 1 we see that for x = 1·3 the correction term is negative, leading to 

{InA +LI(X)}theOry = 8·3. (42) 

Thus the accurate theory diminishes, but preserves, the discrepancy. 
It can be shown that the magnetic fields in Halverson's experiment do not alter 

the energy loss rate to any substantial degree; the discrepancy remains even when 
this effect is accounted for (May and Cramer 1969). 
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APPENDIX 

We give analytic expressions here for the energy loss rate in the limiting cases 
when the test ion speed is much larger than, or smaller than, the plasma electron 
thermal speed; i.e. for x ~ 1 and x < 1. These results are expressed in terms of the 
correction function J(x) defined in equation (37). 

Oase (a) x~ 1 

Here we have !l'(x) -+ 1 + (!){exp( -x2)}. Turning to J 1(x), and noticing that 
(see definitions (27)) X(s) -+ -(1/2s2) and Y(s) "" exp( -S2) for large s, we may show 
that for x~ 1 

(AI) 

For the close-collisions correction, the expression (35b) for G(x) is readily 
simplified, leading to 

Thus the overall correction in the limit x ~ 1 is 

J(x) = 3lnx -(1·347)-~x-2+(!)(x-4). 

Oase (b) x < 1 

In this event the expressions for P(x) and J 1(x) simplify easily, to give 

Jl(X) = -!+(~-Io1T)x2+(!)(x4). 

On the other hand, for small x the expression for G(x) gives 

41T-i P-lG = -2lnx -O+~x2+l!I(x4) 

and consequently 

J2(X) = -(1+0+ln2)+~x2+(!)(x4). 

Collecting these results, the total correction in the limit x < 1 becomes 

J(x) = -(2·7704)+(I-Io1T)x2+(!)(x4). 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

It is comforting to note that the numerical results in Table 1 conform to these 
limiting expressions when x is small or large. 




