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Summary 

An approximate analysis of the one· dimensional expanding flow of an ideal 
dissociating gas, which is initially in a frozen state, is presented. The different types 
of solutions of the equations of the flow, for variations in the rates of expansion and 
recombination, are discussed. Some numerical results indicating the distances and 
other dimensions involved are included. The results of the approximate analysis are 
compared with some numerical solutions and are found to be valid for all cases in 
which the analysis can be expected to apply. 

1. INTRODUCTION 

In this paper an investigation is made of the phenomena which may occur when 
a flow, in which the process of recombination of the gas from a dissociated state has 
been arrested, is allowed to expand through a nozzle with a variation in area of the 
form 

A' = A;'(1 + x'lx;,)V , (1) 

where v > o. It is assumed that the flow has undergone a rapid expansion process, 
such as may occur in the conical nozzle of a shock tunnel, where the flow starts in a 
region of stagnation at a very high temperature and is consequently almost completely 
dissociated in this region. Due to the expansion which takes place in the gas as it 
flows down the conical nozzle, the rate of recombination of the gas is insufficient to 
maintain equilibrium in the flow and the amount of dissociation becomes frozen. 
The Mach number of the flow is assumed to be large, as is the case in the expansion 
of a gas from a region of stagnation at a very high temperature. 

The region of particular interest in the flow through the nozzle, described by 
equation (1), is that where the apparent increase in entropy due to the recombination 
becomes appreciable; This increase in pseudo-entropy, defined as 

in dimensionless variables, is equivalent to the increase in entropy which would occur 
if an amount of heat equivalent to that released to the other degrees of freedom by 
the recombination of the gas were added to the flow. Blythe (1967) has outlined a 
series of asymptotic expansions for relaxation of the vibrational mode in an expanding 
flow through a nozzle of the type given by equation (1). He has indicated that a 
similar solution for the region where the increase in pseudo-entropy due to recombina
tion is important can be obtained by a suitable redefinition of variables for flows in 
which the amount of dissociation is frozen. The length of such a region in relation 
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to the dimensions of experimental apparatus could be important, since it would 
provide a means of producing equilibrium in the flow in a shock tunnel if the length 
is sufficiently small. 

Since the initial conditions for the problem are the same as those which occur 
at the exit point of a nozzle in a shock tunnel, the parameters Ao and Xo can be 
determined by matching the nozzle described by equation (I) to the nozzle of the 
shock tunnel to maintain the continuity of A' and dA' /dx'. Also, because the nozzles 
used are generally of limited divergence so that the flow will remain uniform, it is 
possible to consider the flow as being one-dimensional. 

II. FLOW EQUATIONS 

The dependence on temperature of the constant in the equation for the rate of 
recombination, following Freeman (1958), is assumed to have the form 

kr = ArTS, 

where 0 is taken to be completely arbitrary for the purposes of the present discussion. 
Then, from Lighthill (1957), the equations for the one-dimensional flow of an ideal 
dissociating gas are 

puA = Uo, (2) 

1 dp 3 1 dT Bd doc 
pdx -1+ocT dx = (l+oc)Tdx' (3) 

(4) 

(5) 

and 

p = {(l+oc)/(I+exo)}pT. (6) 

The dimensionless variables p, p, T, u, and ex denote pressure, density, temperature, 
velocity, and the fraction of dissociation respectively, while Bd and Pd are the 
characteristic temperature and density of the ideal dissociating gas. The dimensionless 
variables are defined as 

p = p'/Pcp Bd=Bd/To' ) 
A = A'/Ao' x = x'/xo' u = u'(RTOIW2)-!, (7) 

A = 4(1+oco)xok;oPo2(RTOIW2)-!W22 , 

T = T'/To' p = p'/Po' 

Pd = Pd/PO' 
and 

where R is the universal gas constant, W 2 denotes the molecular weight of the gas, 
the subscript ° indicates conditions at the entry to the nozzle, and the primes denote 
dimensional quantities. 

It is assumed that the flow is frozen at x = 0, so that the dissociation term in 
equation (5) 

(l-ex)(Pd/p)exp( -Bd/T) = {(I-oc)/(l-oce))~, 
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where CXe is the value of the fraction of dissociation at equilibrium, can be neglected. 
It is also assumed that U R:! uo, since the flow resulting from the high temperatures 
in the stagnation region, which are necessary to produce an appreciable degree of 
dissociation, will have a high Mach number. Lastly it is assumed that cx R:! cxo, since 
initial densities are generally sufficiently small to make A small. 
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Applying these assumptions in equations (2)-(6), equation (3) can be rewritten as 

_v_+_3_.!. dT = AOdcx~ (I+X)-2VT 8-1, 
l+x l+cxoT dx uo(l+cxo) 

and this equation can be integrated to give the results, 

I) ¥= 1, l ¥= 0 Tl-iJ = (1+X)-i<1+<xo)(ht)V{1+B(I~S)((1+4_1)}; (8a) 

S = 1, l ¥= 0 T = (l+x)-i(1+<xo)Vexp{~((I+x)I_I)}; (8b) 

I) ¥= 1, l = ° T l - 8 = (1+x)-H1+<xo)(1-8)v{I+B(I_S)10g(l+x)}; (8c) 

S = 1, l = ° T = (I+X)B-t<l+ao); (Sd) 

where B = AOdCXU3uO and l = I-v{2+t(l+cxo}{I)-I)}. 

The behaviour of these solutions can best be appreciated by considering them 
in terms of certain domains in the (8, ltv) plane, shown in Figure 1, which is modelled 
on similar figures presented by Blythe (1967) and Cheng and Lee (1968). Before 
doing so, it is of interest to consider the following expression for the pressure gradient, 
obtained from equations (2)-(6), with substitution of the solution for the temperature 
from equations (8), that is, 

l ¥= 0, (9a) 
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1 = 0, 
dp V{I- (4!~0)v +B(I-8)log(I+X)} 

F(x) dx = - '(I+x){I+B(I-8)log(l+x)} ; 

where 
F(x) = {M~(x)-I}/p(X)U2(X) > 0 

and M~ is the frozen Mach number. 

TABLE 1 

(9b) 

DISTANCE Xs OF RECOMBINATION SHOCK DOWNSTREAM FROM ORIGIN FOR NITROGEN 

X~ = 114, u~ = 7 X 105 em see-1, kr(3000K) = 7 X 1014 em6 mole-2 see-1, <xo = 0·5, and 

v = 0·2,8 = 2 

p~ Xs (em) for 
(gem-3 ) T~ = 100 250 500 750 lOOO 

lO-3 0·012 0·0050 0·0025 0·0017 0·0012 
lO-4 1·3 0·51 0·25 0·17 0·13 
10-5 250 79 34 21 15 
10-6 1·1 X 105 3·3x 104 1·3x 104 7·6x 103 5·2Xl03 

If 8> 1 and 1 ~ 0, then the temperature becomes unbounded at 

x = Xs = {B(8-1)/l}l/LI, 

= exp{I/B(8-1)}-I, 

l> 0, 

1 = o. 

20000K 

0·00062 
0·062 
7·0 
2·0Xl03 

This singularity defines the position of the recombination shock which is characterized 
by a sharp increase in temperature and pressure as a consequence of which the flow 
returns to equilibrium. Although the assumption ex R:i exo, which was made earlier, 
becomes invalid for large values of B, the predicted position of the recombination 
shock is still accurate to within a few per cent when compared with numerical 
solutions, although the error in the temperature may be very large. An indication 
of the dimensions of the recombination shock can be obtained by consideration of the 
values of Xs which are tabulated in Table I, and also from equations (9), which show 
that the pressure begins to increase at 

{( I 8-1)/(8-1 3 )}l/l 
x = :8+-Z- --Z-- (4+ exo)v -I, 

= exp{(~- (4:exo)J/(8-1)}-I, 

If 8 ~ 1 and v < t, then for x sufficiently great 

T I""-.J x(1-2v)/(1-8) 

Z = o. 

so that the temperature again becomes unbounded as x -+ 00. Thus a maximum in 
the temperature will eventually occur. However, in this case the rise in temperature 

_ will be much slower and will occur over a distance of much greater magnitude as can 
be seen by inspection of Tables 2 and 3. The order of magnitude of the distance which 
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is neoessary for the flow to approaoh equilibrium oan be estimated in the following 
manner. Sinoe for most of the diatomio gases the heat of reoombination is la.rge 
oompared with the speoifio heat of the gas, very little reoombination is neoessa.ry for 
the temperature to rise suffioiently to establish eqUilibrium in the flow. Henoe let 

Te = 8d[log{Pd(1- cxo)/,oam-l , 

so that Xe oan be estimated from the relation 

~-.t{IOg(Pd(lcx~CXO)(l+xet) V-I = (l+xe)-t(1+«o)(I-.t)V{l+ B(1;8)(1+X)' -l)}. 

TABLE 2 

ESTIMATED DISTANCE Xe DOWNSTREAM FROM ORIGIN FOR EQUILIBRIUM UNDER CONDITIONS OF 

TABLE 1 WITH 3 = t 

p~ Xe (em) for 
(gem-8) T~ = 100 250 500 750 1000 20000K 

10-8 0·041 0·038 0·035 0·033 0·031 0·024 
10-4 4·0 3·7 3·3 3·1 2·8 2·2 
10-5 760 690 620 560 520 370 
10-6 2·2xl05 2·0xl05 1·8 X 105 1·6x 105 1·5x 105 1·1 X 105 

TABLE 3 

ESTIMATED DISTANCE Xe DOWNSTREAM FROM ORIGIN FOR EQUILIBRIUM FLOW UNDER CONDITIONS 

OF TABLE 1 WITH p~= 10-4 g em-8 AND T~ = 10000 K 

3 Xe (em) for 

11" = 3 5 10 50 100 1000 

0 11·3 11·0 10·7 9·9 9·6 9·3 
-1 1400 430 250 157 146 135 
-2 2·4xl06 3·9 X 104 8·1xl03 3·0x 103 2·7x 108 2·3 X 108 

-3 3·3xl09 3·8x 106 2·9xl05 6·4Xl04 5·4xl04 4·5x~04 

It is worth noting that equations (9) show that for 8 < 1 the pressure gradient beoomes 
positive only if 

3-8 < ltv. 

If l ~ 0 and v <: t, then for x suffioiently great 

T f"-.I x(1-2v)/(1-8) , 

and the approximation remains valid for all values of x, sinoe T -? 0 as x -? 00, 

although the temperature deorease is not as rapid as for the oase when l < 0, sinoe 
the reoombination does have some effeot on the flow. 

If 1 < 0, then for x suffioiently great 

T f"-.I x-i(I+«o)", 
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which is the asymptotic form for a completely frozen flow, so that the recombination 
of the gas has no effect at all on the flow to a first approximation. However, it is 
worth noting that if S is sufficiently large for B(l-S)jl to be greater than unity, 
even though A may be small, there will be a recombination shock at 

Xs = {l+ ljB(S-l)}l/Ll. 

Such a recombination shock is generally much steeper than that which occurs when 
l > 0, and the position given by the above relation compares exceedingly well with 
numerical results. 
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Fig. 2.-Nurnerical solutions for the pressure p, dissociation ex, and temperature T compared 
with the estimated temperature (dashed curves) for v = t, A = 0'01, "'0 = 0'5, and 

T~ = 5000 K in nitrogen. 

III. DISCUSSION 

The numerical solution for a typical problem is compared in Figure 2 with the 
approximation described above. Although the value of A used is small the integrated 
effects of the error in the assumption <X R:! lXo produce quite large errors in the 
temperature far downstream. In fact, for larger values of A, the error is generally 
much smaller, because equilibrium is reached much sooner, and the error does not 
have time to grow to significant proportions. 

Tables 2 and 3 give an indication of the orders of distances involved in the slow 
rise to a maximum in the temperature, where the flow returns to equilibrium. It 
appears that the initial densities would have to be at least of the order of atmospheric 
density, if any appreciable increase in temperature is to be achieved within the 
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limits imposed on the flow by experimental apparatus. Table 1 shows that in the case 
of a recombination shock the distance necessary to reach equilibrium is much less 
than in the case when 8 < 1, when the temperature rises to a maximum value much 
more slowly. In addition the length of the nozzle required to reach equilibrium varies 
considerably with the initial temperature. However, if 8> 1, it would be possible to 
produce the sharp rise in temperature, which characterizes the recombination shock, 
within the order of experimental distances, provided that the initial density is at least 
of the order of 10-5 gem -3. 

At present, however, although experiment indicates that 8 is negative, estimates 
of both variation with temperature and absolute value of the rate of recombination 
vary over large ranges and more definite information is required before it can be 
decided whether the distances required for the flow to regain eqUilibrium are 
compatible with the dimensions of experimental apparatus. 
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