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Summary 

The use of functional integration in developing approximate equations of 
state for simple dense fluids is outlined. The repulsive (short range) and attraotive 
parts of the potential are treated separately and the grand partition function is 
expressed in terms of a functional integral which involves knowledge of the thermo
dynamio properties of the "short.range system". Two separate prooedures are 
outlined to obtain approximate equations of state for dense fluids from this exact 
functional integral. 

1. INTRODUCTION 

The idea of using functional integrals to solve problems in classical statistical 
mechanics was first introduced by Edwards (1959). The method has been used for 
lattice gases and spin systems by several workers (Baker 1962; Siegert 1962; 
Muhlschlegel and Zittartz 1963; Thompson 1965; Thompson and Lavis 1967), 
however it does not seem that the method has been fully developed with regard to 
the properties of continuum fluids. It is the purpose of this paper to show how the 
exact expressions (in terms of functional integrals) can be approximated by well
defined procedures to give approximate equations of state for simple fluids for a 
wide range of densities. 

We consider fluids where the intermolecular potential consists of the sum of a 
short-range potential Uii = U(rii) which is repulsive at the origin and a potential 
Vii = V(rii) which is restricted in that it has a well-defined Fourier transform 

v(k) = f dr V(r) exp( -i k. r) 

that satisfies v(k) < 0 for all k. These conditions are not too restrictive and most 
potentials that are in common use can be divided in this way. One notices, however, 
that the division is not unique for a potential which can be regarded as having a hard 
core of radius d, for then the potential V(r) can be chosen with a great deal of freedom 
for r < d; it being subject only in the condition v(k) < O. This fact can be exploited 
in developing the variational principle and so we will restrict our consideration to 
potentials of this type. 
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II. FORMULATION 

The thermodynamic properties of a system of particles can be found from a 
knowledge of the grand partition function ZG as a function of the temperature T and 
chemical potential fL. Thus we look for 

where f3 = 1jkT and dilN represents an element of the configuration spaces of N 
particles each of which is in a volume V. As shown by Edwards (1959), if we use the 
functional analogue of 

then ZG can be written as 

+f3 ~ (J)(Xt)+! V(27T)-3 J In{t(k)} dk -!f3 J J (J)(x) T(x-y) (J)(y) dXdY) , (3) 

where 0 is a normalization constant, Vo = V(r) Ir=o, and the operator T(x-y) 
satisfies 

J T(x-y) V(y-z) dy = -8(x-z) , (4) 

that is, 

t(k) = -1jv(k) (5) 

ift(k) is the Fourier transform ofT(x). Note that if U(r) contains a hard core of radius 
d then ZG is independent of the values of V(r) for r < d and hence is independent 
of Yo. 

We now assume that we can solve the complete statistical mechanical problem 
for a system of particles interacting via the short-range potential U(r) only and moving 
in a random external field -(J)(x) , i.e. that we can find the local pressureps(x; {fL+(J)(X)}) 
for such a system. This local pressure is a function of position which depends on the 
form of the external potential over all space, i.e. it is a functional of (J)(x). The 
functional Ps(x; {fL+(J)(x)}) satisfies 

ZSG = exp(f3 J dx Ps(x; {,.,,+(J)(X)}») 

= :£ (N! A3N)-1 JdilN exp(f3NfL-tf3~' Uil +f3 ~ (J)(Xt»). (6) 
N=O il i 
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Hence equation (3) becomes 

ZG = C J SIPexp(tV(21T)-aJ dkln{t(k)}+.B J dx Ps(x; {fL+IP(x)+lVo}) 

-t.B f J IP(x) T(x-y) IP(y) dXdY) . (7) 

We have thus reduced the problem to one of evaluating a functional integral over the 
random field IP(x). This is an exact, although formal, expression and it may be that 
methods other than those outlined here will be developed to evaluate functional 
integrals of this type. 

The first approximation we present is obtained by expanding the functional 
lnZ~ about a constant function by using the functional Taylor expansiori. discussed, 
for example, by Lebowitz and Percus (1963) and Lebowitz (1964). They showed that 

S(lnzt)I 
SIP(x) $=¢ = .Bns(fL+cfo) (8) 

and 

(9) 

where nS(fL) and hs(r, fL) = gs(r, fL)-l are the number density and correlation function 
of the "short-ranged system" when it has a chemical potential fL. Thus, including 
terms to second order in IP, we have 

.B J dx Ps(X;{fL+IP(X)}) = .BVps(fL+cfo) +.Bns(fL+cfo) J {IP(x)-cfo} dx 

+l.B2 J J {IP(x)-cfo}{n~hs(1 x-y I) 

+ns S(x-y)}{IP(y)-cfo} dxdy, (10) 

where Ps(fL) is the pressure of the short-ranged system in the absence of an external 
field. If we use this approximation in equation (7) then 

ZG R:i C J sPexp(tV(21T)-a J dklnt(k)+.BVps(fL+ V ) 

+t.BV(t VO-v)2v(O) +{.Bns(fL+v)-.B(! Vo-v)/v(O)} J P(x) dx 

+t.B J J P(x){.Bn~hs(1 x-y I) +.Bns S(x-y) -T(x-y)}P(y) dXdY) , 

(ll) 

where we have written l[I(x) = IP(x)+!Vo-v. In this expression the value of Vo is 
arbitrary and it is appropriate to choose the value which eliminates the term linear 
in l[I in the integrand, i.e. we require 

(12) 
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The functional integral can then be evaluated to give the approximation 

V-1lnZG = {3P(fL) = {3Ps(fL+V)+t{3v(O){ns(fL+v)}2 

-i(21T)-3 J dk In[1 +v(k){ns+n; hs(k)}] , (13) 

where 

hs(k) = J dx exp(ik. x) hs(r) . 

Since v is an arbitrary parameter in this expression one should choose v so that 
P(fL) is inde:r>endent (at least to first order) of small changes in v, that is, we require 
8p/8v = O. Thus v should be chosen so that 

(14) 

This requirement simplifies the equation of state since then the equation determining 
the number density becomes 

(15) 

so that the equation of state, in this approximation, is 

{3p(n) = {3ps(n)+t{3v(O)n2 -t(21T)-3 J dk In[I+{3v(k){n+n2 hs(k)}] (16) 

with v(k) and v chosen to satisfy equations (12) and (14). 
If we regard {3v(k) as a small quantity and retain from equation (13) only the 

first· order terms then we have to vary the expression 

P(fL) R::! Ps(fL+V)-vns(fL+V)-!Js J gs(r) V(r) dx 

with respect to v. Using the first-order form of equation (14) and equation (12), 
this implies the choice 

and so, since we can now replace ns(fL+v) by n(fL) (equation (15)), the equation of 
state is 

p(n) R::! P8(n)+tn2~( n J gs(r) V(r) dX), 
which is the result Zwanzig (1954) obtained from a simple inverse temperature 
expansion (see also Storer 1969). One would hope that the full approximation would 
give an even better result. 
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III. VARIATIONAL ApPROXIMATION 

An alternative approximation to the exact equation of state can be obtained 
by following the variational procedure introduced by Feynman (1955) and used in 
this context by Edwards (1959). If 

ZG = f Sa>exp(-G) (17) 

then 

ZG > Z~ = f Sa>exp(-Go-<G-Go») , (18) 

where 

< G-Go) = f Sa> exp( - Go) (G- Go) / f Sa> exp( - Go) . (19) 

We therefore choose Go so that equation (19) can be evaluated and then vary the 
parameters to maximize Z~. Let us choose in this case 

Go = if3 f f dxdy {a>(x)-a>o} S(x-y){a>(y)-a>o} (20) 

and vary the constant a>o and the function S(x). We can also regard Vo and V(r) for 
r < d as variational parameters, since in an exact calculation these will not affect the 
result. Changing variables to P(x) = a>(x)-a>o we have 

f Sa>exp( -Go) = f SP(x) exp ( -!f3 f f P(x)S(x-y) P(y) dXdY) 

= cexp( lV(27T)-3 flnS(k) dk), 

where s(k) is the Fourier transform of S(x). Also 

Hence 

<G-Go) = <-f3 f.dXPs(x; {f'+!Vo+a>o+P(x)}) 

+<tf3 f f dx dy P(X){T(X-y)-S(X-y)}P(y) 

-i V(27T) -3 fIn t(k) dk +t Vf3a>~ t(O) . 

In z8 = <f3 f dx Ps( x; {f'+i Vo+a>o+ P(x)}) 

+!f3Va>~/v(O) -! V(27T)-3 f dk 1n{ -v(k) s(k)} 

+lV(27T)-3 f dk (1+ V(k)IS(kJ 

(21) 

(22) 

(23) 
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We now make one further approximation and that is to assume that Ps is a local 
functional of 'P(x), that is, 

Ps(X;{P(X)}) = ps(P(X») , (24) 

where Ps(/L) is the pressure of the short-ranged system as a function of the chemical 
potential. This is an assumption of local equilibrium which one would not expect to 
break down except when P(x) is a rapidly varying function of x. 

Using the functional analogue of 

f E1 dga exp ( - ~ gaA;l gb) ~f(ga) 

= exp{tNIn1T +lTr(InA)} ~ 7T -i A;t fdg exp( -g2/Aaa}, (25) 
ta 

we have 

<! f dXPs(/L+p(Xn) = V(7T<y)-t f:oo dl/Jexp(-1/J2/U ) {JPs(/L+I/J) , (26) 

where 

U = (2/{J)(27T)-3 f 8:)· (27) 

To simplify notation we write 

[Ps(/L)] = (7TU)-t f: dl/J exp(1/J2/u)ps(/L+I/J), (28) 

so 

V-1InZ~ = [fJPs(/L+lVo+4>o)]+l{J4>~/v(O) -t(27T)-3 f dk In{-V(k)8(k)} 

+t(27T)-3 f dk (1+ V(k)18(k»). (29) 

The variational principle, based on equation (18), consists of varying 4>0 and 8(k) to 
make In zg a maximum. 

Before we go into the details of this procedure let us note an interesting fact. 
The total interparticle potential can be separated into two parts U and V in a rather 
arbitrary fashion, provided that their sum is equal to the original potential. However, 
the approximation to Inzg given by equation (29) is not independent of this division 
and so we could perhaps choose the division to make In Z~ a maximum. If we do this 
arbitrarily then one finds an exact solution to the problem is given by V(r) = 0, in 
which case 

InzG = {Jps V. (30) 

This of course is not a useful solution at all because now U is equal to the total 
interparticle potential and we are left with the original problem. So we should choose 
U such that Ps can be evaluated to a good approximation and then we can vary V(r) 
where this variation is allowed, e.g. if U has a hard core of radius d we can vary V(r) 
for r < d, otherwise V(r) has to be regarded as fixed. 
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Because the parameter a is used in all the open-bracket expressions via equation 
(28) we will find that it allows more flexibility if we regard the equation (27) as a 
subsidiary condition and maximize lnZ~ with respect to a subject to this constraint. 
This is done more conveniently by introducing a Lagrange multiplier ,\ and varying 

V-1lnzt = [Bps(f'+! Vo+(/))]+!IM'~/v(O) -!(217) -3 f dk In{ -v(k) 8(k)} 

+!(217)-3 f dk (1+ V(k:8(kJ +1",\(217)-3 f ~)-iNJa (31) 

with respect to (/)0, 8(k), and a and then using equation (27). In addition one can 
maximize lnZ~ with respect to V(r) for r < d. Complete variation of V(r) for r < d 
leads to an awkward nonlinear integral equation 80 we simplify this to some extent 
by choosing a function H(r) which satisfies the conditions 

H(r) = 0 for r > d, 

H(r) = 1 for r < d, 
and writing 

V(r) = W(r) + VoH(r). 

(320.) 

(32b) 

(33) 

We can then maximize lnZ& with respect to Yo. (Note that Vo = V(O) so W(O) = 0.) 
Let us then differentiate lnZ& with respect to the variational parameters and 

set these derivatives equal to zero. Thus 

o(lnZ&)/o(/)o = 0 (34) 
implies 

-(/)0 = v(O)[ns(f'+t Vo+(/)o)] , (35) 
where 

(36) 

is the number density of the short-ranged system as a function of the chemical 
potential. However, we know that the number density n(f') of our system can be 
approximated by 

(37) 

where all the variational parameters are given a value which makes In Z& a maximum. 
Thus the value of (/)0 and v(O) will define n(f') via 

The condition 

implies 

(/)0 = -n(f') v(O) . 

o(lnZ&)/oa = 0 

This equation can be simplified by using the identity 

(38) 

(39) 

(40) 

(41) 
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which is obtained from equation (28) by integration by parts. Thus we have 

(42) 

The third equation, obtained from 

o(lnZg)jos(k) = 0, (43) 
IS 

s(k) = -ljv(k)-'\, (44) 
or 

-s(k)v(k) = l+'\v(k). (45) 
Finally, the requirement 

(46) 

gives, in conjunction with equations (38) and (45), 

2 -3 J h(k) 
(3n(/L)-{3n (/L)h(O) = (271") dk l+'\v(k)' (47) 

where h(k) is the Fourier transform of the function H(r) defined in equation (33). 
Equations (35), (42), and (47), in conjunction with equation (27), which becomes 

{ -3}J v(k) 
u = - 2(271") i{3 dk l+'\v(k) ' (48) 

are then sufficient to determine the values of lfJo, Vo, u, and ,\ which make InZg a 
maximum. These values can then be used in equations (31) and (38) to give the 
approximate equation of state, thus 

(3p(/L) = (V -1 In zg)max 

= IT{3Ps(/L+t Vo+lfJo)] + t{3v(O) n2(/L) -!(3'\u-t(271") -3 J dk In{l +'\v(k)}, (49) 

n(/L) = -lfJojv(O) . (50) 

The main drawback with the procedure as outlined is that we have a set of four 
inter-related nonlinear equations to solve. Since the place of u in these equations is 
particularly complicated we could improve this aspect somewhat by performing a 
limited variation of parameters and restricting u to be zero. This will allow us to 
remove the open brackets and obtain the equations 

and 

-1fJ0 = v(O) ns(/L+t Vo+lfJo), 

(3n(/L)-{3n2(/L) h(O) = (271")-3 J dk In{l +'\v(k)}, 

J v(k) 
0= dk l+'\v(k) 

to determine the parameters lfJo, V 0, and'\. For this situation 

(51) 

(52) 

(53) 
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and 

n(/k) = -f/Jojv(O) (55) 

give the approximate equation of state. In both these approximations it must be 
remembered that v(k) = w(k) + Vo h(k) > 0 and so we are not allowed an unrestricted 
choice for Vo. 

A further simplification which still retains many of the features of the more 
general approximation is obtained by further restricting the variation by requiring 
V(r) to be fixed. This leaves two parameters f/Jo and ,\ which are determined by 
equations (51) and (53). 

IV. DISCUSSION 

We have assumed that we know the equation of state for a system of particles 
interacting only via the short-range potential U(r). For hard spheres this information 
could be obtained from the extensive Monte Carlo calculations (Wainwright and 
Alder 1958; Wood, Parker, and Jacobson 1958) or more conveniently from the exact 
solution of the Percus-Yevick equation (Thiele 1963, Wertheim 1963); however, the 
most accurate analytic representation is a Pade approximation of Ree and Hoover 
(1964). The "effective diameter" approximation of Rowlinson (1964) (see also Barker 
and Henderson 1967) gives a useful extension of these results for steep intermolecular 
potentials. Calculations are proceeding to compare the two approximations outlined 
with each other, with experiments, and with Monte Carlo results. 
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